Part Number Hot Search : 
9S12P 22500 167BZX A2500 ONDUC DTD123T EC3A37 B437TQ
Product Description
Full Text Search
 

To Download 68HC908JK8 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
MC68HC908JL8 MC68HC908JK8
Technical Data
M68HC08
Microcontrollers
MC68HC908JL8/D Rev. 2, 12/2002
MOTOROLA.COM/SEMICONDUCTORS
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
MC68HC908JL8 MC68HC908JK8
Technical Data
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Motorola and the Stylized M logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc.
(c) Motorola, Inc., 2002
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Technical Data 3
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Revision History
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.
Freescale Semiconductor, Inc...
Revision History
Date Dec 2002 Revision Level 2 First general release. Description Page Number(s) --
Technical Data 4
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 27 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Freescale Semiconductor, Inc...
Section 3. Random-Access Memory (RAM) . . . . . . . . . . 47 Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 49 Section 5. Configuration and Mask Option Registers (CONFIG & MOR). . . . . . . . . . . . . . . . . . . . . . 59 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 65 Section 7. System Integration Module (SIM) . . . . . . . . . 85 Section 8. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . 109 Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 117 Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 145 Section 11. Serial Communications Interface (SCI) . . . 169 Section 12. Analog-to-Digital Converter (ADC) . . . . . . 207 Section 13. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 217 Section 14. External Interrupt (IRQ) . . . . . . . . . . . . . . . 235 Section 15. Keyboard Interrupt Module (KBI). . . . . . . . 241 Section 16. Computer Operating Properly (COP) . . . . 249 Section 17. Low Voltage Inhibit (LVI) . . . . . . . . . . . . . . 255 Section 18. Break Module (BREAK) . . . . . . . . . . . . . . . 259 Section 19. Electrical Specifications. . . . . . . . . . . . . . . 267 Section 20. Mechanical Specifications . . . . . . . . . . . . . 279 Section 21. Ordering Information . . . . . . . . . . . . . . . . . 285
MC68HC908JL8 -- Rev. 2.0 MOTOROLA List of Sections For More Information On This Product, Go to: www.freescale.com Technical Data 5
Freescale Semiconductor, Inc.
List of Sections
Freescale Semiconductor, Inc...
Technical Data 6 List of Sections For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Table of Contents
Section 1. General Description
1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Freescale Semiconductor, Inc...
1.2 1.3 1.4 1.5 1.6
Section 2. Memory Map
2.1 2.2 2.3 2.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Section 3. Random-Access Memory (RAM)
3.1 3.2 3.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Section 4. FLASH Memory (FLASH)
4.1 4.2 4.3
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Technical Data 7
Freescale Semiconductor, Inc.
Table of Contents
4.4 4.5 4.6 4.7 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .57
Freescale Semiconductor, Inc...
Section 5. Configuration and Mask Option Registers (CONFIG & MOR)
5.1 5.2 5.3 5.4 5.5 5.6 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Section 6. Central Processor Unit (CPU)
6.1 6.2 6.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .70 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .72
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Technical Data 8 Table of Contents For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
6.7 6.8 6.9
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Section 7. System Integration Module (SIM)
7.1 7.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Freescale Semiconductor, Inc...
7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 89 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . . . 89 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 89 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 91 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 93 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . 94 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 94 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 94 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .95 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 102
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com Technical Data 9
Freescale Semiconductor, Inc.
Table of Contents
7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.1 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.2 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.3 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 108
Section 8. Oscillator (OSC)
Freescale Semiconductor, Inc...
8.1 8.2
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.3 Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3.1 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.3.2 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 114 8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) . 115 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 115 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . 115 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . 115 8.5.6 Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . 115 8.5.7 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5.8 Internal Oscillator Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . 116 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 116
Section 9. Monitor ROM (MON)
9.1 9.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Technical Data 10 Table of Contents For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
9.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Freescale Semiconductor, Inc...
9.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 9.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 9.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Section 10. Timer Interface Module (TIM)
10.1 10.2 10.3 10.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 153 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 153 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 154 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 155 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com Technical Data 11
Freescale Semiconductor, Inc.
Table of Contents
10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Freescale Semiconductor, Inc...
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.1 TIM Clock Pin (ADC12/T2CLK) . . . . . . . . . . . . . . . . . . . . . 159 10.9.2 TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1) . . . . . . . . . . . . . . . . . . . . 159 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 160 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 163 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .164 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Section 11. Serial Communications Interface (SCI)
11.1 11.2 11.3 11.4 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 11.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 179 11.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Technical Data 12 Table of Contents For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
11.5.3.3 11.5.3.4 11.5.3.5 11.5.3.6 11.5.3.7 11.5.3.8
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Freescale Semiconductor, Inc...
11.7
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 189
11.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 11.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 11.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Section 12. Analog-to-Digital Converter (ADC)
12.1 12.2 12.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 13
Freescale Semiconductor, Inc.
Table of Contents
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 212 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 215
Freescale Semiconductor, Inc...
Section 13. Input/Output (I/O) Ports
13.1 13.2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 221 13.3.3 Port A Input Pull-Up Enable Registers . . . . . . . . . . . . . . . . 223 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 225 13.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 228 13.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . 230 13.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 232
Section 14. External Interrupt (IRQ)
14.1 14.2 14.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Technical Data 14 Table of Contents For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 14.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 14.5 14.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .239 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239
Section 15. Keyboard Interrupt Module (KBI)
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Freescale Semiconductor, Inc...
15.2 15.3 15.4
15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 15.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 246 15.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 247 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .248
Section 16. Computer Operating Properly (COP)
16.1 16.2 16.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com Technical Data 15
Freescale Semiconductor, Inc.
Table of Contents
16.4.7 16.5 16.6 16.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 252 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 16.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Freescale Semiconductor, Inc...
16.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .254
Section 17. Low Voltage Inhibit (LVI)
17.1 17.2 17.3 17.4 17.5 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . 257
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Section 18. Break Module (BREAK)
18.1 18.2 18.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .262 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 18.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . . 263
Technical Data 16 Table of Contents For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Table of Contents
18.5.2 18.5.3 18.5.4
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .264 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 266
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Section 19. Electrical Specifications
Freescale Semiconductor, Inc...
19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 269 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 270 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 272 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 273
19.10 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 19.13 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 277 19.14 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 19.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Section 20. Mechanical Specifications
20.1 20.2 20.3 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 280
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Table of Contents For More Information On This Product, Go to: www.freescale.com
Technical Data 17
Freescale Semiconductor, Inc.
Table of Contents
20.4 20.5 20.6 20.7 20.8 20-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 280 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 281 28-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 281 32-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 282 32-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 283
Section 21. Ordering Information
Freescale Semiconductor, Inc...
21.1 21.2 21.3
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Technical Data 18 Table of Contents For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
List of Figures
Figure 1-1 1-2 1-3 1-4 1-5 2-1 2-2 4-1 4-2 4-3 4-4 5-1 5-2 5-3 5-4 6-1 6-2 6-3 6-4 6-5 6-6 7-1 7-2 7-3 7-4
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Title
Page
Freescale Semiconductor, Inc...
MC68HC908JL8 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 30 32-Pin LQFP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32-Pin SDIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 31 28-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . . 32 20-Pin PDIP/SOIC Pin Assignment . . . . . . . . . . . . . . . . . . . . . 32 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 38 FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 50 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 51 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 55 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 57 CONFIG Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 70 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Technical Data List of Figures For More Information On This Product, Go to: www.freescale.com 19
Freescale Semiconductor, Inc.
List of Figures
Figure 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 7-14 7-15 7-16 7-17 7-18 7-19 7-20 7-21 7-22 8-1 8-2 8-3 8-4 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 10-1 10-2 10-3
Technical Data 20 List of Figures For More Information On This Product, Go to: www.freescale.com
Title
Page
Freescale Semiconductor, Inc...
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 98 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .100 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .100 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .101 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 103 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 103 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 105 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 105 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . 107 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .108 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . 111 XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . . 112 RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . 113 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 122 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Data Block Format for ROM-Resident Routines. . . . . . . . . . . 132 EE_WRITE FLASH Memory Usage . . . . . . . . . . . . . . . . . . . . 141 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 154
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Figure 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 10-15 11-1 11-2 11-3 11-4 11-5 11-6 11-7 11-8 11-9 11-10 11-11 11-12 11-13 11-14 11-15 11-16 12-1 12-2 12-3 12-4 12-5 13-1
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Title
Page
Freescale Semiconductor, Inc...
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 160 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 162 TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 163 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .163 TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 163 TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 164 TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 164 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 168 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 168 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 168 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 168 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 181 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 191 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 194 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 197 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 199 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 203 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 204 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .208 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 212 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . .215 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Technical Data
List of Figures For More Information On This Product, Go to: www.freescale.com
21
Freescale Semiconductor, Inc.
List of Figures
Figure 13-2 13-3 13-4 13-5 13-6 13-7 13-8 13-9 13-10 13-11 13-12 13-13 13-14 13-15 13-16 14-1 14-2 14-3 14-4 15-1 15-2 15-3 15-4 16-1 16-2 16-3 17-1 17-2 17-3 18-1 18-2 18-3
Technical Data 22 List of Figures For More Information On This Product, Go to: www.freescale.com
Title
Page
Freescale Semiconductor, Inc...
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .220 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 221 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . . . . 223 PTA7 Input Pull-up Enable Register (PTA7PUE) . . . . . . . . . . 223 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .224 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 225 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .227 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 228 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port D Control Register (PDCR) . . . . . . . . . . . . . . . . . . . . . . . 230 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .231 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 232 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .237 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 237 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .240 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 243 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 246 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 247 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .252 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . .253 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .257 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .257 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 261 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 261 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 263
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
List of Figures
Figure 18-4 18-5 18-6 18-7
Title
Page
Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 264 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 264 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 264 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . .266
Freescale Semiconductor, Inc...
19-1 RC vs. Frequency (5V @25C) . . . . . . . . . . . . . . . . . . . . . . . 272 19-2 RC vs. Frequency (3V @25C) . . . . . . . . . . . . . . . . . . . . . . . 275 19-3 Internal Oscillator Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 276 19-4 Typical Operating IDD (XTAL osc), with All Modules Turned On (25 C) . . . . . . . . . . . . . . . . . 276 19-5 Typical Wait Mode IDD (XTAL osc), with All Modules Turned Off (25 C) . . . . . . . . . . . . . . . . . 276 20-1 20-2 20-3 20-4 20-5 20-6 20-Pin PDIP (Case #738) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 20-Pin SOIC (Case #751D) . . . . . . . . . . . . . . . . . . . . . . . . . .280 28-Pin PDIP (Case #710) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 28-Pin SOIC (Case #751F). . . . . . . . . . . . . . . . . . . . . . . . . . . 281 32-Pin SDIP (Case #1376) . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 32-Pin LQFP (Case #873A) . . . . . . . . . . . . . . . . . . . . . . . . . .283
MC68HC908JL8 -- Rev. 2.0 MOTOROLA List of Figures For More Information On This Product, Go to: www.freescale.com
Technical Data 23
Freescale Semiconductor, Inc.
List of Figures
Freescale Semiconductor, Inc...
Technical Data 24 List of Figures For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
List of Tables
Table 1-1
Title
Page
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Monitor Mode Entry Requirements and Options. . . . . . . . . . . 120 Monitor Mode Vector Differences . . . . . . . . . . . . . . . . . . . . . .123 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 123 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 126 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 126 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 127 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 127 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . .128 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 128 Summary of ROM-Resident Routines . . . . . . . . . . . . . . . . . . 131 PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 ERARNGE Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 MON_PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 MON_ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 ICP_LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 EE_WRITE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 EE_READ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Technical Data List of Tables For More Information On This Product, Go to: www.freescale.com 25
Freescale Semiconductor, Inc...
2-1 6-1 6-2 7-1 7-2 7-3 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 10-1
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
List of Tables
Table 10-2 10-3 11-1 11-2 11-3 11-4 11-5 11-7 11-6 11-8 12-1 12-2 13-1 13-2 13-3 13-4 13-5 15-1 17-1 19-1 19-2 19-3 19-4 19-5 19-6 19-7 19-8 19-9 19-10 19-11 19-12 21-1
Technical Data 26 List of Tables For More Information On This Product, Go to: www.freescale.com
Title
Page
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . .166 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .193 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . 206 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . . 219 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Trip Voltage Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 DC Electrical Characteristics (5V) . . . . . . . . . . . . . . . . . . . . . 270 Control Timing (5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Oscillator Specifications (5V) . . . . . . . . . . . . . . . . . . . . . . . . . 272 DC Electrical Characteristics (3V) . . . . . . . . . . . . . . . . . . . . . 273 Control Timing (3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Oscillator Specifications (3V) . . . . . . . . . . . . . . . . . . . . . . . . . 275 Timer Interface Module Characteristics (5V and 3V) . . . . . . . 277 ADC Characteristics (5V and 3V). . . . . . . . . . . . . . . . . . . . . .277 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 1. General Description
1.1 Contents
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Freescale Semiconductor, Inc...
1.3 1.4 1.5 1.6
1.2 Introduction
The MC68HC908JL8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Technical Data 27
Freescale Semiconductor, Inc.
General Description 1.3 Features
Features of the MC68HC908JL8 include the following: * * * * High-performance M68HC08 architecture, Fully upward-compatible object code with M6805, M146805, and M68HC05 Families Low-power design; fully static with stop and wait modes Maximum internal bus frequency: - 8-MHz at 5V operating voltage - 4-MHz at 3V operating voltage * Oscillator options: - Crystal or resonator - RC oscillator * * * 8,192 bytes user program FLASH memory with security1 feature 256 bytes of on-chip RAM Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture, output compare, and PWM capability on each channel; external clock input option on TIM2 13-channel, 8-bit analog-to-digital converter (ADC) Serial communications interface module (SCI) 26 general-purpose input/output (I/O) ports: - 8 keyboard interrupt with internal pull-up - 11 LED drivers (sink) - 2 x 25mA open-drain I/O with pull-up * * Resident routines for in-circuit programming and EEPROM emulation System protection features: - Optional computer operating properly (COP) reset, driven by internal RC oscillator
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Freescale Semiconductor, Inc...
* * *
Technical Data 28 General Description For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
General Description Features
- Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation - Illegal opcode detection with reset - Illegal address detection with reset * * * Master reset pin with internal pull-up and power-on reset IRQ with schmitt-trigger input and programmable pull-up 20-pin dual in-line package (PDIP), 20-pin small outline integrated package (SOIC), 28-pin PDIP, 28-pin SOIC, 32-pin shrink dual inline package (SDIP), and 32-pin low-profile quad flat pack (LQFP) Specific features of the MC68HC908JL8 in 28-pin packages are: - 23 general-purpose I/Os only - 7 keyboard interrupt with internal pull-up - 10 LED drivers (sink) - 12-channel ADC - Timer I/O pins on TIM1 only * Specific features of the MC68HC908JL8 in 20-pin packages are: - 15 general-purpose I/Os only - 1 keyboard interrupt with internal pull-up - 4 LED drivers (sink) - 10-channel ADC - Timer I/O pins on TIM1 only Features of the CPU08 include the following: * * * * * * * * * *
MC68HC908JL8 -- Rev. 2.0 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc...
*
Enhanced HC05 programming model Extensive loop control functions 16 addressing modes (eight more than the HC05) 16-bit index register and stack pointer Memory-to-memory data transfers Fast 8 x 8 multiply instruction Fast 16/8 divide instruction Binary-coded decimal (BCD) instructions Optimization for controller applications Efficient C language support
Technical Data 29
Freescale Semiconductor, Inc.
General Description 1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908JL8.
INTERNAL BUS M68HC08 CPU CPU REGISTERS ARITHMETIC/LOGIC UNIT (ALU) KEYBOARD INTERRUPT MODULE PORTA DDRA PTA7/KBI7** PTA6/KBI6** PTA5/KBI5** PTA4/KBI4** PTA3/KBI3** PTA2/KBI2** PTA1/KBI1** PTA0/KBI0** PTB7/ADC7 PTB6/ADC6 PTB5/ADC5 PTB4/ADC4 PTB3/ADC3 PTB2/ADC2 PTB1/ADC1 PTB0/ADC0 ADC12/T2CLK SERIAL COMMUNICATIONS INTERFACE MODULE PORTD PTD7/RxD** PTD6/TxD** PTD5/T1CH1 PTD4/T1CH0 PTD3/ADC8 PTD2/ADC9 PTD1/ADC10 PTD0/ADC11
# #
Freescale Semiconductor, Inc...
CONTROL AND STATUS REGISTERS -- 64 BYTES
8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE
##
USER FLASH -- 8,192 BYTES
2-CHANNEL TIMER INTERFACE MODULE 1
USER RAM -- 256 BYTES PORTB DDRB DDRD 2-CHANNEL TIMER INTERFACE MODULE 2
MONITOR ROM -- 959 BYTES
USER FLASH VECTORS -- 36 BYTES
BREAK MODULE
OSC1
CRYSTAL OSCILLATOR RC OSCILLATOR INTERNAL OSCILLATOR
OSC2/RCCLK
POWER-ON RESET MODULE
* RST
SYSTEM INTEGRATION MODULE EXTERNAL INTERRUPT MODULE
LOW-VOLTAGE INHIBIT MODULE DDRE PTE
##
PTE1/T2CH1
#
* IRQ
COMPUTER OPERATING PROPERLY MODULE
PTE0/T2CH0
VDD POWER VSS ADC REFERENCE
* Pin contains integrated pull-up device. ** Pin contains programmable pull-up device. 25mA open-drain if output pin. LED direct sink pin. Shared pin: OSC2/RCCLK/PTA6/KBI6. # Pins available on 32-pin packages only. ## Pins available on 28-pin and 32-pin packages only.
Figure 1-1. MC68HC908JL8 Block Diagram
Technical Data 30 General Description For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
General Description Pin Assignments
1.5 Pin Assignments
ADC12/T2CLK
25 PTD4/T1CH0 24 PTD5/T1CH1 23 22 21 20 19 18 10 11 12 13 14 15
PTA0/KBI0
PTA7/KBI7
32 VSS
27
31
30
29
OSC1 1 OSC2/RCCLK/PTA6/KBI6 PTA1/KBI1 VDD
2 3 4 5 6 7
28
26
PTA5/KBI5
IRQ
RST
PTD2/ADC9 PTA4/KBI4 PTD3/ADC8 PTB0/ADC0 PTB1/ADC1 PTD1/ADC10
17 PTB2/ADC2
Freescale Semiconductor, Inc...
PTA2/KBI2 PTA3/KBI3 PTB7/ADC7 PTB6/ADC6 8
PTE0/T2CH0
PTE1/T2CH1
Figure 1-2. 32-Pin LQFP Pin Assignment
IRQ PTA0/KBI0 VSS OSC1 OSC2/RCCLK/PTA6/KBI6 PTA1/KBI1 VDD PTA2/KBI2 PTA3/KBI3 PTB7/ADC7 PTB6/ADC6 PTB5/ADC5 PTD7/RxD PTD6/TxD PTE0/T2CH0 PTE1/T2CH1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
Figure 1-3. 32-Pin SDIP Pin Assignment
MC68HC908JL8 -- Rev. 2.0 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com Technical Data 31
PTD0/ADC11
ADC12/T2CLK PTA7/KBI7 RST PTA5/KBI5 PTD4/T1CH0 PTD5/T1CH1 PTD2/ADC9 PTA4/KBI4 PTD3/ADC8 PTB0/ADC0 PTB1/ADC1 PTD1/ADC10 PTB2/ADC2 PTB3/ADC3 PTD0/ADC11 PTB4/ADC4
PTB3/ADC3 16
PTB5/ADC5 9
PTD7/RxD
PTD6/TxD
PTB4/ADC4
Freescale Semiconductor, Inc.
General Description
IRQ PTA0/KBI0 VSS OSC1 OSC2/RCCLK/PTA6/KBI6 PTA1/KBI1 VDD PTA2/KBI2 PTA3/KBI3
1 2 3 4 5 6 7 8 9 10 11 12 13 14
28 27 26 25 24 23 22 21 20 19 18 17 16 15
RST PTA5/KBI5 PTD4/T1CH0 PTD5/T1CH1 PTD2/ADC9 PTA4/KBI4 PTD3/ADC8 PTB0/ADC0 PTB1/ADC1 PTD1/ADC10 PTB2/ADC2 PTB3/ADC3 PTD0/ADC11
PTA7/KBI7 ADC12/T2CLK Pins not available on 28-pin packages PTE0/T2CH0 PTE1/T2CH1
Freescale Semiconductor, Inc...
PTB7/ADC7 PTB6/ADC6 PTB5/ADC5 PTD7/RxD PTD6/TxD
PTB4/ADC4
Internal pads are unconnected. Set these unused port I/Os to output low.
Figure 1-4. 28-Pin PDIP/SOIC Pin Assignment
IRQ VSS OSC1 OSC2/RCCLK/PTA6/KBI6 VDD PTB7/ADC7 PTB6/ADC6 PTB5/ADC5 PTD7/RxD PTD6/TxD
1 2 3 4 5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
RST PTD4/T1CH0 PTD5/T1CH1 PTD2/ADC9 PTD3/ADC8 PTB0/ADC0 PTB1/ADC1 PTB2/ADC2 PTB3/ADC3 PTB4/ADC4
Pins not available on 20-pin packages PTA0/KBI0 PTA1/KBI1 PTA2/KBI2 PTA3/KBI3 PTA4/KBI4 PTA5/KBI5 ADC12/T2CLK PTA7/KBI7
Internal pads are unconnected. Set these unused port I/Os to output low.
PTD0/ADC11 PTD1/ADC10
PTE0/T2CH0 PTE1/T2CH1
The 20-pin MC68HC908JL8 is designated MC68HC908JK8.
Figure 1-5. 20-Pin PDIP/SOIC Pin Assignment
Technical Data 32 General Description For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
General Description Pin Functions
1.6 Pin Functions
Description of the pin functions are provided in Table 1-1.
Table 1-1. Pin Functions
PIN NAME VDD Power supply. Power supply ground. Reset input, active low; with internal pull-up and schmitt trigger input. External IRQ pin; with programmable internal pull-up and schmitt trigger input. Used for monitor mode entry. OSC1 Crystal or RC oscillator input. OSC2: crystal oscillator output; inverted OSC1 signal. OSC2/RCCLK RCCLK: RC oscillator clock output. Pin as PTA6/KBI6 (see PTA0-PTA7). ADC12: channel-12 input of ADC. ADC12/T2CLK T2CLK: external input clock for TIM2. 8-bit general purpose I/O port. Each pin has programmable internal pull-up when configured as input. PTA0-PTA7 Pins as keyboard interrupts, KBI0-KBI7. PTA0-PTA5 and PTA7 have LED direct sink capability. PTA6 as OSC2/RCCLK. 8-bit general purpose I/O port. PTB0-PTB7 Pins as ADC input channels, ADC0-ADC7. In VSS to VDD In In/Out In In Out Out In/Out VDD VDD VDD VDD VSS VDD VDD PIN DESCRIPTION IN/OUT In Out In/Out In In In Out Out In/Out In VOLTAGE LEVEL 5V or 3V 0V VDD VDD VDD to VTST VDD VDD VDD VDD VSS to VDD
Freescale Semiconductor, Inc...
VSS RST
IRQ
MC68HC908JL8 -- Rev. 2.0 MOTOROLA General Description For More Information On This Product, Go to: www.freescale.com
Technical Data 33
Freescale Semiconductor, Inc.
General Description
Table 1-1. Pin Functions (Continued)
PIN NAME PIN DESCRIPTION 8-bit general purpose I/O port; with programmable internal pull-ups on PTD6-PTD7. PTD0-PTD3 as ADC input channels, ADC11-ADC8. PTD2-PTD3 and PTD6-PTD7 have LED direct sink capability PTD0-PTD7 PTD4 as T1CH0 of TIM1. PTD5 as T1CH1 of TIM1. PTD6-PTD7 have configurable 25mA open-drain output. PTD6 as TxD of SCI. PTD7 as RxD of SCI. 2-bit general purpose I/O port. PTE0-PTE1 PTE0 as T2CH0 of TIM2. PTE1 as T2CH1 of TIM2. IN/OUT In/Out Input Out In/Out In/Out Out Out In In/Out In/Out In/Out VOLTAGE LEVEL VDD VSS to VDD VSS VDD VDD VSS VDD VDD VDD VDD VDD
Freescale Semiconductor, Inc...
NOTE:
Devices in 28-pin packages, the following pins are not available: PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK. Devices in 20-pin packages, the following pins are not available: PTA0/KBI0-PTA5/KBI5, PTD0/ADC11, PTD1/ADC10, PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK.
Technical Data 34 General Description For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 2. Memory Map
2.1 Contents
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Freescale Semiconductor, Inc...
2.3 2.4
2.2 Introduction
The CPU08 can address 64-kbytes of memory space. The memory map, shown in Figure 2-1, includes: * * * 8,192 bytes of user FLASH memory 36 bytes of user-defined vectors 959 bytes of monitor ROM
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 35
Freescale Semiconductor, Inc.
Memory Map
$0000 $003F $0040 $005F $0060 $015F $0160 $DBFF
I/O REGISTERS 64 BYTES RESERVED 32 BYTES RAM 256 BYTES UNIMPLEMENTED 55,968 BYTES FLASH MEMORY 8,192 BYTES MONITOR ROM 512 BYTES BREAK STATUS REGISTER (BSR) RESET STATUS REGISTER (RSR) RESERVED BREAK FLAG CONTROL REGISTER (BFCR) INTERRUPT STATUS REGISTER 1 (INT1) INTERRUPT STATUS REGISTER 2 (INT2) INTERRUPT STATUS REGISTER 3 (INT3) RESERVED FLASH CONTROL REGISTER (FLCR) RESERVED BREAK ADDRESS HIGH REGISTER (BRKH) BREAK ADDRESS LOW REGISTER (BRKL) BREAK STATUS AND CONTROL REGISTER (BRKSCR) RESERVED MONITOR ROM 447 BYTES FLASH BLOCK PROTECT REGISTER (FLBPR) MASK OPTION REGISTER (MOR) RESERVED 11 BYTES USER FLASH VECTORS 36 BYTES
Freescale Semiconductor, Inc...
$DC00 $FBFF $FC00 $FDFF $FE00 $FE01 $FE02 $FE03 $FE04 $FE05 $FE06 $FE07 $FE08 $FE09 $FF0B $FE0C $FE0D $FE0E $FE0F $FE10 $FFCE $FFCF $FFD0 $FFD1 $FFDB $FFDC $FFFF
Figure 2-1. Memory Map
Technical Data 36 Memory Map For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Memory Map I/O Section
2.3 I/O Section
Addresses $0000-$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have the following addresses: * * * $FE00; Break Status Register, BSR $FE01; Reset Status Register, RSR $FE02; Reserved $FE03; Break Flag Control Register, BFCR $FE04; Interrupt Status Register 1, INT1 $FE05; Interrupt Status Register 2, INT2 $FE06; Interrupt Status Register 3, INT3 $FE07; Reserved $FE08; FLASH Control Register, FLCR $FE09; Reserved $FE0A; Reserved $FE0B; Reserved $FE0C; Break Address Register High, BRKH $FE0D; Break Address Register Low, BRKL $FE0E; Break Status and Control Register, BRKSCR $FE0F; Reserved $FFCF; FLASH Block Protect Register, FLBPR (FLASH register) $FFD0; Mask Option Register, MOR (FLASH register) $FFFF; COP Control Register, COPCTL
Freescale Semiconductor, Inc...
* * * * * * * * * * * * * * * *
2.4 Monitor ROM
The 959 bytes at addresses $FC00-$FDFF and $FE10-$FFCE are reserved ROM addresses that contain the instructions for the monitor functions. (See Section 9. Monitor ROM (MON).)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 37
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read:
Bit 7 PTA7
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
$0000
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset
Freescale Semiconductor, Inc...
$0002
Unimplemented Write:
$0003
Read: Port D Data Register Write: (PTD) Reset:
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
Unaffected by reset DDRA6 0 DDRB6 0 DDRA5 0 DDRB5 0 DDRA4 0 DDRB4 0 DDRA3 0 DDRB3 0 DDRA2 0 DDRB2 0 DDRA1 0 DDRB1 0 DDRA0 0 DDRB0 0
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 Read: $0006 Unimplemented Write:
Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 Read: Port E Data Register Write: (PTE) Reset: Read: $0009 Unimplemented Write:
DDRD6 0
DDRD5 0
DDRD4 0
DDRD3 0
DDRD2 0
DDRD1 0 PTE1
DDRD0 0 PTE0
$0008
Unaffected by reset
U = Unaffected
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)
Technical Data 38 Memory Map For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Monitor ROM
Addr.
Register Name Read: Port D Control Register Write: (PDCR) Reset: Read:
Bit 7 0
6 0
5 0
4 0
3
2
1
Bit 0 PTDPU6 0
$000A
SLOWD7 SLOWD6 PTDPU7 0 0 0
0
0
0
0
$000B
Unimplemented Write:
Freescale Semiconductor, Inc...
Read: Data Direction Register E Write: $000C (DDRE) Reset:
DDRE1 0 0 0 0 0 0 0
DDRE0 0
$000D
Read: Port A Input Pull-up PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Enable Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 Read: PTA7 Input Pull-up PTAPUE7 Enable Register Write: (PTA7PUE) Reset: 0 Read: Unimplemented Write:
$000E
0
0
0
0
0
0
0
$000F $0012
$0013
Read: LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: U = Unaffected SCTIE 0 R8
ENSCI 0 TCIE 0 T8 U TC
TXINV 0 SCRIE 0 DMARE 0 SCRF
M 0 ILIE 0 DMATE 0 IDLE
WAKE 0 TE 0 ORIE 0 OR
ILTY 0 RE 0 NEIE 0 NF
PEN 0 RWU 0 FEIE 0 FE
PTY 0 SBK 0 PEIE 0 PE
$0014
$0015
U SCTE
$0016
1
1
0
0
0
0 R
0 = Reserved
0
X = Indeterminate
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 39
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: Read: Keyboard Status and Control Register Write: (KBSCR) Reset: Read: Keyboard Interrupt Enable Register Write: (KBIER) Reset: Read:
Bit 7
6
5
4
3
2
1 BKF
Bit 0 RPF
$0017
0 R7 T7
0 R6 T6
0 R5 T5
0 R4 T4
0 R3 T3
0 R2 T2
0 R1 T1
0 R0 T0
$0018
Unaffected by reset SCP1 0 0 0 0 0 0 SCP0 0 0 R 0 KEYF SCR2 0 0 ACKK 0 KBIE7 0 0 KBIE6 0 0 KBIE5 0 0 KBIE4 0 0 KBIE3 0 0 KBIE2 0 SCR1 0 IMASKK 0 KBIE1 0 SCR0 0 MODEK 0 KBIE0 0
Freescale Semiconductor, Inc...
$0019
$001A
$001B
$001C
Unimplemented Write:
$001D
Read: IRQ Status and Control Register Write: (INTSCR) Reset:
0
0
0
0
IRQF
0 ACK
IMASK 0 R 0 STOP 0
MODE 0 STOP_ ICLKDIS 0 COPD 0
0
0 R 0 R 0
0 R 0 R 0
0 LVIT1 0* LVID 0
0 LVIT0 0* R 0
0 R 0 SSREC 0
$001E
Read: IRQPUD Configuration Register 2 Write: (CONFIG2) Reset: 0 Read: COPRS Configuration Register 1 Write: (CONFIG1) Reset: 0
$001F
One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only. U = Unaffected X = Indeterminate = Unimplemented R = Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)
Technical Data 40 Memory Map For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Monitor ROM
Addr.
Register Name Read: TIM1 Status and Control Register Write: (T1SC) Reset: Read: TIM1 Counter Register High Write: (T1CNTH) Reset: Read: TIM1 Counter Register Low Write: (T1CNTL) Reset: Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM1 Counter Modulo Register Low Write: (T1MODL) Reset: Read: TIM1 Channel 0 Status and Control Register Write: (T1SC0) Reset: Read: TIM1 Channel 0 Register High Write: (T1CH0H) Reset: Read: TIM1 Channel 0 Register Low Write: (T1CH0L) Reset: Read: TIM1 Channel 1 Status and Control Register Write: (T1SC1) Reset: Read: TIM1 Channel 1 Register High Write: (T1CH1H) Reset: U = Unaffected
Bit 7 TOF 0 0 Bit15
6 TOIE 0 Bit14
5 TSTOP 1 Bit13
4 0 TRST 0 Bit12
3 0
2 PS2 0 Bit10
1 PS1 0 Bit9
Bit 0 PS0 0 Bit8
$0020
0 Bit11
$0021
0 Bit7
0 Bit6
0 Bit5
0 Bit4
0 Bit3
0 Bit2
0 Bit1
0 Bit0
Freescale Semiconductor, Inc...
$0022
0 Bit15 1 Bit7 1 CH0F 0 0 Bit15
0 Bit14 1 Bit6 1 CH0IE 0 Bit14
0 Bit13 1 Bit5 1 MS0B 0 Bit13
0 Bit12 1 Bit4 1 MS0A 0 Bit12
0 Bit11 1 Bit3 1 ELS0B 0 Bit11
0 Bit10 1 Bit2 1 ELS0A 0 Bit10
0 Bit9 1 Bit1 1 TOV0 0 Bit9
0 Bit8 1 Bit0 1 CH0MAX 0 Bit8
$0023
$0024
$0025
$0026
Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
$0027
Indeterminate after reset CH1F 0 0 Bit15 CH1IE 0 Bit14 0 MS1A 0 Bit12 ELS1B 0 Bit11 ELS1A 0 Bit10 TOV1 0 Bit9 CH1MAX 0 Bit8
$0028
0 Bit13
$0029
Indeterminate after reset X = Indeterminate = Unimplemented R = Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 41
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: TIM1 Channel 1 Register Low Write: (T1CH1L) Reset: Read: Unimplemented Write:
Bit 7 Bit7
6 Bit6
5 Bit5
4 Bit4
3 Bit3
2 Bit2
1 Bit1
Bit 0 Bit0
$002A
Indeterminate after reset
$002B $002F
Freescale Semiconductor, Inc...
$0030
Read: TIM2 Status and Control Register Write: (T2SC) Reset: Read: TIM2 Counter Register High Write: (T2CNTH) Reset: Read: TIM2 Counter Register Low Write: (T2CNTL) Reset: Read: TIM2 Counter Modulo Register High Write: (T2MODH) Reset: Read: TIM2 Counter Modulo Register Low Write: (T2MODL) Reset: Read: TIM2 Channel 0 Status and Control Register Write: (T2SC0) Reset: Read: TIM2 Channel 0 Register High Write: (T2CH0H) Reset: Read: TIM2 Channel 0 Register Low Write: (T2CH0L) Reset: U = Unaffected
TOF 0 0 Bit15
TOIE 0 Bit14
TSTOP 1 Bit13
0 TRST 0 Bit12
0
PS2 0 Bit10
PS1 0 Bit9
PS0 0 Bit8
0 Bit11
$0031
0 Bit7
0 Bit6
0 Bit5
0 Bit4
0 Bit3
0 Bit2
0 Bit1
0 Bit0
$0032
0 Bit15 1 Bit7 1 CH0F 0 0 Bit15
0 Bit14 1 Bit6 1 CH0IE 0 Bit14
0 Bit13 1 Bit5 1 MS0B 0 Bit13
0 Bit12 1 Bit4 1 MS0A 0 Bit12
0 Bit11 1 Bit3 1 ELS0B 0 Bit11
0 Bit10 1 Bit2 1 ELS0A 0 Bit10
0 Bit9 1 Bit1 1 TOV0 0 Bit9
0 Bit8 1 Bit0 1 CH0MAX 0 Bit8
$0033
$0034
$0035
$0036
Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
$0037
Indeterminate after reset X = Indeterminate = Unimplemented R = Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)
Technical Data 42 Memory Map For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Monitor ROM
Addr.
Register Name Read: TIM2 Channel 1 Status and Control Register Write: (T2SC1) Reset: Read: TIM2 Channel 1 Register High Write: (T2CH1H) Reset: Read: TIM2 Channel 1 Register Low Write: (T2CH1L) Reset: Read:
Bit 7 CH1F 0 0 Bit15
6 CH1IE 0 Bit14
5 0
4 MS1A 0 Bit12
3 ELS1B 0 Bit11
2 ELS1A 0 Bit10
1 TOV1 0 Bit9
Bit 0 CH1MAX 0 Bit8
$0038
0 Bit13
$0039
Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Freescale Semiconductor, Inc...
$003A
Indeterminate after reset
$003B
Unimplemented Write:
$003C
Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset:
COCO
AIEN 0 AD6
ADCO 0 AD5
ADCH4 1 AD4
ADCH3 1 AD3
ADCH2 1 AD2
ADCH1 1 AD1
ADCH0 1 AD0
0 AD7
$003D
Indeterminate after reset ADIV2 0 ADIV1 0 ADIV0 0 0 0 0 0 0
Read: ADC Input Clock Register $003E Write: (ADICLK) Reset: Read: $003F Unimplemented Write:
0
0
0
0
0
$FE00
Read: Break Status Register Write: (BSR) Reset:
R
R
R
R
R
R
SBSW See note 0
R
Note: Writing a logic 0 clears SBSW. U = Unaffected X = Indeterminate = Unimplemented R = Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 43
Freescale Semiconductor, Inc.
Memory Map
Addr.
Register Name Read: Reset Status Register Write: (RSR) POR: Read:
Bit 7 POR
6 PIN
5 COP
4 ILOP
3 ILAD
2 MODRST
1 LVI
Bit 0 0
$FE01
1 R
0 R
0 R
0 R
0 R
0 R
0 R
0 R
$FE02
Reserved Write:
Freescale Semiconductor, Inc...
$FE03
Read: Break Flag Control Register Write: (BFCR) Reset:
BCFE 0 IF6 R 0 IF14 R 0 0 R 0 R
R
R
R
R
R
R
R
Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: Read: Interrupt Status Register 2 $FE05 Write: (INT2) Reset: Read: Interrupt Status Register 3 $FE06 Write: (INT3) Reset: Read: $FE07 Reserved Write:
IF5 R 0 IF13 R 0 0 R 0 R
IF4 R 0 IF12 R 0 0 R 0 R
IF3 R 0 IF11 R 0 0 R 0 R
0 R 0 0 R 0 0 R 0 R
IF1 R 0 0 R 0 0 R 0 R
0 R 0 IF8 R 0 0 R 0 R
0 R 0 IF7 R 0 IF15 R 0 R
$FE08
Read: FLASH Control Register Write: (FLCR) Reset: Read: Reserved Write:
0
0
0
0
HVEN 0 R
MASS 0 R
ERASE 0 R
PGM 0 R
0 R
0 R
0 R
0 R
$FE09 $FE0B
$FE0C
Read: Break Address High Register Write: (BRKH) Reset: U = Unaffected
Bit15 0
Bit14 0
Bit13 0
Bit12 0
Bit11 0
Bit10 0 R
Bit9 0 = Reserved
Bit8 0
X = Indeterminate
= Unimplemented
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)
Technical Data 44 Memory Map For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Memory Map Monitor ROM
Addr.
Register Name Read: Break Address low Register Write: (BRKL) Reset:
Bit 7 Bit7 0 BRKE 0
6 Bit6 0 BRKA 0
5 Bit5 0 0
4 Bit4 0 0
3 Bit3 0 0
2 Bit2 0 0
1 Bit1 0 0
Bit 0 Bit0 0 0
$FE0D
Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset:
0
0
0
0
0
0
Freescale Semiconductor, Inc...
$FFCF
Read: FLASH Block Protect Register Write: (FLBPR)# Reset:
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
Unaffected by reset; $FF when blank R R R R R R R
$FFD0
Read: OSCSEL Mask Option Register Write: (MOR)# Reset:
Unaffected by reset; $FF when blank
# Non-volatile FLASH registers; write by programming.
$FFFF
Read: COP Control Register Write: (COPCTL) Reset: U = Unaffected X = Indeterminate
Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset = Unimplemented R = Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Memory Map For More Information On This Product, Go to: www.freescale.com
Technical Data 45
Freescale Semiconductor, Inc.
Memory Map
Table 2-1. Vector Addresses
Vector Priority Lowest INT Flag -- Address $FFD0 $FFDD $FFDE $FFDF $FFE0 $FFE1 $FFE2 $FFE3 $FFE4 $FFE5 $FFE6 $FFE7 -- $FFEC $FFED $FFEE $FFEF $FFF0 $FFF1 $FFF2 $FFF3 $FFF4 $FFF5 $FFF6 $FFF7 -- $FFFA $FFFB $FFFC $FFFD $FFFE $FFFF Not Used ADC Conversion Complete Vector (High) ADC Conversion Complete Vector (Low) Keyboard Interrupt Vector (High) Keyboard Interrupt Vector (Low) SCI Transmit Vector (High) SCI Transmit Vector (Low) SCI Receive Vector (High) SCI Receive Vector (Low) SCI Error Vector (High) SCI Error Vector (Low) Not Used TIM2 Overflow Vector (High) TIM2 Overflow Vector (Low) TIM2 Channel 1 Vector (High) TIM2 Channel 1 Vector (Low) TIM2 Channel 0 Vector (High) TIM2 Channel 0 Vector (Low) TIM1 Overflow Vector (High) TIM1 Overflow Vector (Low) TIM1 Channel 1 Vector (High) TIM1 Channel 1 Vector (Low) TIM1 Channel 0 Vector (High) TIM1 Channel 0 Vector (Low) Not Used IRQ Vector (High) IRQ Vector (Low) SWI Vector (High) SWI Vector (Low) Reset Vector (High) Reset Vector (Low) MC68HC908JL8 -- Rev. 2.0 Memory Map For More Information On This Product, Go to: www.freescale.com MOTOROLA Vector
.
IF15 IF14
Freescale Semiconductor, Inc...
IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 -- --
Highest
Technical Data 46
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 3. Random-Access Memory (RAM)
3.1 Contents
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Freescale Semiconductor, Inc...
3.3
3.2 Introduction
This section describes the 256 bytes of RAM.
3.3 Functional Description
Addresses $0060 through $015F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM locations. Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805 compatibility, the H register is not stacked.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Random-Access Memory (RAM) For More Information On This Product, Go to: www.freescale.com
Technical Data 47
Freescale Semiconductor, Inc.
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation.
Freescale Semiconductor, Inc...
Technical Data 48 Random-Access Memory (RAM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 4. FLASH Memory (FLASH)
4.1 Contents
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Freescale Semiconductor, Inc...
4.3 4.4 4.5 4.6 4.7
4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.8.1 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .57
4.2 Introduction
This section describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
Technical Data 49
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
Addr.
Register Name Read: FLASH Control Register Write: (FLCR) Reset: Read: FLASH Block Protect Register Write: (FLBPR)# Reset:
Bit 7 0
6 0
5 0
4 0
3 HVEN 0 BPR3
2 MASS 0 BPR2
1 ERASE 0 BPR1
Bit 0 PGM 0 BPR0
$FE08
0 BPR7
0 BPR6
0 BPR5
0 BPR4
$FFCF
Unaffected by reset; $FF when blank
# Non-volatile FLASH register; write by programming.
Freescale Semiconductor, Inc...
= Unimplemented
Figure 4-1. FLASH I/O Register Summary
4.3 Functional Description
The FLASH memory consists of an array of 8,192 bytes for user memory plus a block of 36 bytes for user interrupt vectors. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH memory page size is defined as 64 bytes, and is the minimum size that can be erased in a page erase operation. Program and erase operations are facilitated through control bits in FLASH control register (FLCR). The address ranges for the FLASH memory are: * * $DC00-$FBFF; user memory; 12,288 bytes $FFDC-$FFFF; user interrupt vectors; 36 bytes
Programming tools are available from Motorola. Contact your local Motorola representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 50 FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) FLASH Control Register
4.4 FLASH Control Register
The FLASH control register (FCLR) controls FLASH program and erase operations.
Address: $FE08 Bit 7 Read: Write: 0 6 0 5 0 4 0 HVEN Reset: 0 0 0 0 0 MASS 0 ERASE 0 PGM 0 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 4-2. FLASH Control Register (FLCR) HVEN -- High Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS -- Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or page erase operation when the ERASE bit is set. 1 = Mass erase operation selected 0 = Page erase operation selected ERASE -- Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM -- Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected
MC68HC908JL8 -- Rev. 2.0 MOTOROLA FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com Technical Data 51
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) 4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80 or $XXC0. The 36-byte user interrupt vectors area also forms a page. Any page within the 8,192 bytes user memory area ($DC00-$FBFF) can be erased alone. The 36-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons. Mass erase is required to erase this page.
Freescale Semiconductor, Inc...
1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH address within the page address range desired. 4. Wait for a time, tnvs (10s). 5. Set the HVEN bit. 6. Wait for a time terase (4ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh (5s). 9. Clear the HVEN bit. 10. After time, trcv (1s), the memory can be accessed in read mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
Technical Data 52 FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) FLASH Mass Erase Operation
4.6 FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the FLASH memory address range.
Freescale Semiconductor, Inc...
4. Wait for a time, tnvs (10s). 5. Set the HVEN bit. 6. Wait for a time tmerase (4ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh1 (100s). 9. Clear the HVEN bit. 10. After time, trcv (1s), the memory can be accessed in read mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
Technical Data 53
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) 4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0 or $XXE0. Use this step-by-step procedure to program a row of FLASH memory: (Figure 4-3 shows a flowchart of the programming algorithm.) 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the address range of the row to be programmed. 4. Wait for a time, tnvs (10s). 5. Set the HVEN bit. 6. Wait for a time, tpgs (5s). 7. Write data to the FLASH address to be programmed. 8. Wait for time, tprog (30s). 9. Repeat steps 7 and 8 until all bytes within the row are programmed. 10. Clear the PGM bit. 11. Wait for time, tnvh (5s). 12. Clear the HVEN bit. 13. After time, trcv (1s), the memory can be accessed in read mode again. This program sequence is repeated throughout the memory until all data is programmed.
Freescale Semiconductor, Inc...
NOTE:
The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH addressed programmed to clearing the PGM bit (step 7 to step 10), must not exceed the maximum programming time, tprog max. Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps.
MC68HC908JL8 -- Rev. 2.0 FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com MOTOROLA
NOTE:
Technical Data 54
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) FLASH Program Operation
1
Set PGM bit
Algorithm for programming a row (32 bytes) of FLASH memory
2
Read the FLASH block protect register
3
Write any data to any FLASH location within the address range of the row to be programmed
4
Wait for a time, tnvs
Freescale Semiconductor, Inc...
5
Set HVEN bit
6
Wait for a time, tpgs
7
Write data to the FLASH address to be programmed
8
Wait for a time, tprog
Completed programming this row? N
10
Y
NOTE: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming time, tprog max. This row program algorithm assumes the row/s to be programmed are initially erased.
Clear PGM bit
11
Wait for a time, tnvh
12
Clear HVEN bit
13
Wait for a time, trcv
End of programming
Figure 4-3. FLASH Programming Flowchart
MC68HC908JL8 -- Rev. 2.0 MOTOROLA FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com Technical Data 55
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) 4.8 FLASH Block Protection
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program operations.
Freescale Semiconductor, Inc...
NOTE:
In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit When the FLBPR is program with all 0's, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1's), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in 4.8.1 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode.
Technical Data 56 FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
FLASH Memory (FLASH) FLASH Block Protection
4.8.1 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory.
Address: $FFCF Bit 7 6 BPR6 5 BPR5 4 BPR4 3 BPR3 2 BPR2 1 BPR1 Bit 0 BPR0
Freescale Semiconductor, Inc...
Read: BPR7 Write: Reset: Unaffected by reset; $FF when blank
Non-volatile FLASH register; write by programming.
Figure 4-4. FLASH Block Protect Register (FLBPR) BPR[7:0] -- FLASH Block Protect Bits BPR[7:0] represent bits [13:6] of a 16-bit memory address. Bits [15:14] are logic 1's and bits [5:0] are logic 0's.
16-bit memory address Start address of FLASH block protect 11 BPR[7:0] 000000
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page boundaries -- 64 bytes) within the FLASH memory.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
Technical Data 57
Freescale Semiconductor, Inc.
FLASH Memory (FLASH)
Examples of protect start address:
BPR[7:0] $00-$70 $71 (0111 0001) $72 (0111 0010) $73 (0111 0011) Start of Address of Protect Range (1) The entire FLASH memory is protected. $DC40 (1101 1100 0100 0000) $DC80 (1101 1100 1000 0000) $DCC0 (1101 1100 1100 0000)
Freescale Semiconductor, Inc...
and so on... $FD (1111 1101) $FE (1111 1110) $FF $FF40 (1111 1111 0100 0000) $FF80 (1111 1111 1000 0000) The entire FLASH memory is not protected.
NOTES: 1. The end address of the protected range is always $FFFF.
Technical Data 58 FLASH Memory (FLASH) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 5. Configuration and Mask Option Registers (CONFIG & MOR)
5.1 Contents
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .61 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .62 Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Freescale Semiconductor, Inc...
5.3 5.4 5.5 5.6
5.2 Introduction
This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option register (MOR). The configuration registers enable or disable these options: * * * * * * * * Computer operating properly module (COP) COP timeout period (213 -24 or 218 -24 ICLK cycles) Internal oscillator during stop mode Low voltage inhibit (LVI) module LVI module voltage trip point selection STOP instruction Stop mode recovery time (32 or 4096 ICLK cycles) Pull-up on IRQ pin
The mask option register selects the oscillator option: * Crystal or RC
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com
Technical Data 59
Freescale Semiconductor, Inc.
Configuration and Mask Option
Addr.
Register Name
Bit 7
6 R 0 R 0 R
5 R 0 R 0 R
4 LVIT1 0* LVID 0 R
3 LVIT0 0* R 0 R
2 R 0 SSREC 0 R
1 R 0 STOP 0 R
Bit 0 STOP_ ICLKDIS 0 COPD 0 R
$001E
Read: IRQPUD Configuration Register 2 Write: (CONFIG2) Reset: 0 Read: COPRS Configuration Register 1 Write: (CONFIG1) Reset: 0 Read: OSCSEL Mask Option Register Write: (MOR)# Reset:
$001F
Freescale Semiconductor, Inc...
$FFD0
Unaffected by reset; $FF when blank
One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only. # Non-volatile FLASH register; write by programming. R = Reserved
Figure 5-1. CONFIG Registers Summary
5.3 Functional Description
The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F. The configuration registers may be read at anytime.
NOTE:
The options except LVIT[1:0] are one-time writable by the user after each reset. The LVIT[1:0] bits are one-time writable by the user only after each POR (power-on reset). The CONFIG registers are not in the FLASH memory but are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-2 and Figure 5-3. The mask option register (MOR) is used to select the oscillator option for the MCU: crystal oscillator or RC oscillator. The MOR is implemented as a byte in FLASH memory. Hence, writing to the MOR requires programming the byte.
Technical Data 60
MC68HC908JL8 -- Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Configuration and Mask Option Registers (CONFIG & MOR) Configuration Register 1 (CONFIG1)
5.4 Configuration Register 1 (CONFIG1)
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 R 0 = Reserved 0 0 0 0 0 0 R R LVID R SSREC STOP COPD 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 5-2. Configuration Register 1 (CONFIG1) COPRS -- COP Rate Select Bit COPRS selects the COP time-out period. Reset clears COPRS. (See Section 16. Computer Operating Properly (COP).) 1 = COP timeout period is (213 - 24) ICLK cycles 0 = COP timeout period is (218 - 24) ICLK cycles LVID -- Low Voltage Inhibit Disable Bit LVID disables the LVI module. Reset clears LVID. (See Section 17. Low Voltage Inhibit (LVI).) 1 = Low voltage inhibit disabled 0 = Low voltage inhibit enabled SSREC -- Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 ICLK cycles instead of a 4096 ICLK cycle delay. 1 = Stop mode recovery after 32 ICLK cycles 0 = Stop mode recovery after 4096 ICLK cycles
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal, do not set the SSREC bit. STOP -- STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com
Technical Data 61
Freescale Semiconductor, Inc.
Configuration and Mask Option
COPD -- COP Disable Bit COPD disables the COP module. Reset clears COPD. (See Section 16. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled
5.5 Configuration Register 2 (CONFIG2)
Freescale Semiconductor, Inc...
Address:
$001E Bit 7 6 R 0 0 = Reserved 5 R 0 0 4 LVIT1
Not affected
3 LVIT0
Not affected
2 R 0 0
1 R 0 0
Bit 0 STOP_ ICLKDIS 0 0
Read: IRQPUD Write: Reset: POR: 0 0 R
0
0
Figure 5-3. Configuration Register 2 (CONFIG2) IRQPUD -- IRQ Pin Pull-Up Disable Bit IRQPUD disconnects the internal pull-up on the IRQ pin. 1 = Internal pull-up is disconnected 0 = Internal pull-up is connected between IRQ pin and VDD LVIT1, LVIT0 -- LVI Trip Voltage Selection Bits Detail description of trip voltage selection is given in Section 17. Low Voltage Inhibit (LVI). STOP_ICLKDIS -- Internal Oscillator Stop Mode Disable Bit Setting STOP_ICLKDIS disables the internal oscillator during stop mode. When this bit is cleared, the internal oscillator continues to operate in stop mode. Reset clears this bit. 1 = Internal oscillator disabled during stop mode 0 = Internal oscillator enabled during stop mode
Technical Data 62
MC68HC908JL8 -- Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Configuration and Mask Option Registers (CONFIG & MOR) Mask Option Register (MOR)
5.6 Mask Option Register (MOR)
The mask option register (MOR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. This register is read after a power-on reset to determine the type of oscillator selected. (See Section 8. Oscillator (OSC).)
Address: $FFD0 Bit 7 Read: OSCSEL Write: Erased: Reset: 1 1 1 1 1 1 1 1 R R R R R R R 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Unaffected by reset
Non-volatile FLASH register; write by programming. R = Reserved
Figure 5-4. Mask Option Register (MOR) OSCSEL -- Oscillator Select Bit OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is logic 1, selecting the crystal oscillator option. This bit is unaffected by reset. 1 = Crystal oscillator 0 = RC oscillator Bits 6-0 -- Should be left as logic 1's.
NOTE:
When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is used as OSC2; other functions such as PTA6/KBI6 will not be available.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com
Technical Data 63
Freescale Semiconductor, Inc.
Configuration and Mask Option
Freescale Semiconductor, Inc...
Technical Data 64
MC68HC908JL8 -- Rev. 2.0 Configuration and Mask Option Registers (CONFIG & MOR) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 6. Central Processor Unit (CPU)
6.1 Contents
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Freescale Semiconductor, Inc...
6.3
6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .70 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .72
6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.7 6.8 6.9 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 65
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) 6.3 Features
* * * * * * Object code fully upward-compatible with M68HC05 Family 16-bit stack pointer with stack manipulation instructions 16-bit index register with x-register manipulation instructions 8-MHz CPU internal bus frequency 64-Kbyte program/data memory space 16 addressing modes Memory-to-memory data moves without using accumulator Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions Enhanced binary-coded decimal (BCD) data handling Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes Low-power stop and wait modes
Freescale Semiconductor, Inc...
* * * * *
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.
Technical Data 66 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
7 15 H 15 15 X
0 ACCUMULATOR (A) 0 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 0 PROGRAM COUNTER (PC)
7 0 V11HINZC
CONDITION CODE REGISTER (CCR)
Freescale Semiconductor, Inc...
CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO'S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.
Bit 7
Read: Write: Reset: Unaffected by reset
6
5
4
3
2
1
Bit 0
Figure 6-2. Accumulator (A)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 67
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location.
Freescale Semiconductor, Inc...
Bit 15
Read: Write: Reset: 0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate
Figure 6-3. Index Register (H:X)
6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand.
Technical Data 68 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
Bit 15
Read: Write: Reset: 0
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)
NOTE:
Freescale Semiconductor, Inc...
The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations.
6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state.
Bit 15
Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit 0
Figure 6-5. Program Counter (PC)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 69
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register.
Bit 7
Read: V Write: 1 1 1 1 H X I 1 N X Z X C X
6
5
4
3
2
1
Bit 0
Freescale Semiconductor, Inc...
Reset:
X X = Indeterminate
Figure 6-6. Condition Code Register (CCR) V -- Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H -- Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I -- Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled
Technical Data 70 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU Registers
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N -- Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z -- Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result C -- Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions -- such as bit test and branch, shift, and rotate -- also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7
Freescale Semiconductor, Inc...
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Technical Data Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com 71
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) 6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU.
Freescale Semiconductor, Inc...
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
6.6.1 Wait Mode The WAIT instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
6.6.2 Stop Mode The STOP instruction: * Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. Disables the CPU clock
*
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.
Technical Data 72 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) CPU During Break Interrupts
6.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode
Freescale Semiconductor, Inc...
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted.
6.8 Instruction Set Summary
Table 6-1 provides a summary of the M68HC08 instruction set.
6.9 Opcode Map
The opcode map is provided in Table 6-2.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 73
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 2 2 2 3 4 4 3 2 4 5 4 1 1 4 3 5 4 1 1 4 3 5 3 4 4 4 4 4 4 4 4 Source Form ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP Operand ii dd hh ll ee ff ff ff ee ff ii dd hh ll ee ff ff ff ee ff ii ii ii dd hh ll ee ff ff ff ee ff dd ff ff dd ff ff rr dd dd dd dd dd dd dd dd Address Mode Opcode A9 B9 C9 D9 E9 F9 9EE9 9ED9 AB BB CB DB EB FB 9EEB 9EDB A7 AF A4 B4 C4 D4 E4 F4 9EE4 9ED4 38 48 58 68 78 9E68 37 47 57 67 77 9E67 24 11 13 15 17 19 1B 1D 1F Effect on CCR VH INZC
Operation
Description
Add with Carry
A (A) + (M) + (C)
IMM DIR EXT IX2 - IX1 IX SP1 SP2 IMM DIR EXT IX2 - IX1 IX SP1 SP2
Freescale Semiconductor, Inc...
ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP AIS #opr AIX #opr AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCC rel
Add without Carry
A (A) + (M)
Add Immediate Value (Signed) to SP Add Immediate Value (Signed) to H:X
SP (SP) + (16 M) H:X (H:X) + (16 M)
- - - - - - IMM - - - - - - IMM IMM DIR EXT IX2 - IX1 IX SP1 SP2
Logical AND
A (A) & (M)
0--
Arithmetic Shift Left (Same as LSL)
C b7 b0
0
DIR INH INH -- IX1 IX SP1 DIR INH INH -- IX1 IX SP1
Arithmetic Shift Right
b7 b0
C
Branch if Carry Bit Clear
PC (PC) + 2 + rel ? (C) = 0
- - - - - - REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7)
BCLR n, opr
Clear Bit n in M
Mn 0
Technical Data 74 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary
Cycles 3 3 3 3 3 3 3 3 3 3 2 3 4 4 3 2 4 5 3 3 3 3 3 3 3 3 3 3 Source Form BCS rel BEQ rel BGE opr Operand rr rr rr rr rr rr rr rr rr rr ii dd hh ll ee ff ff ff ee ff rr rr rr rr rr rr rr rr rr rr Address Mode Opcode 25 27 90 92 28 29 22 24 2F 2E A5 B5 C5 D5 E5 F5 9EE5 9ED5 93 25 23 91 2C 2B 2D 26 2A 20 Effect on CCR VH INZC Branch if Carry Bit Set (Same as BLO) Branch if Equal Branch if Greater Than or Equal To (Signed Operands) Branch if Greater Than (Signed Operands) Branch if Half Carry Bit Clear Branch if Half Carry Bit Set Branch if Higher Branch if Higher or Same (Same as BCC) Branch if IRQ Pin High Branch if IRQ Pin Low PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (Z) = 1 PC (PC) + 2 + rel ? (N V) = 0
Operation
Description
- - - - - - REL - - - - - - REL - - - - - - REL
BGT opr
PC (PC) + 2 +rel ? (Z) | (N V)=0 - - - - - - REL PC (PC) + 2 + rel ? (H) = 0 PC (PC) + 2 + rel ? (H) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 0 PC (PC) + 2 + rel ? (C) = 0 PC (PC) + 2 + rel ? IRQ = 1 PC (PC) + 2 + rel ? IRQ = 0 - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL IMM DIR EXT IX2 - IX1 IX SP1 SP2
Freescale Semiconductor, Inc...
BHCC rel BHCS rel BHI rel BHS rel BIH rel BIL rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP BLE opr BLO rel BLS rel BLT opr BMC rel BMI rel BMS rel BNE rel BPL rel BRA rel
Bit Test
(A) & (M)
0--
Branch if Less Than or Equal To (Signed Operands) Branch if Lower (Same as BCS) Branch if Lower or Same Branch if Less Than (Signed Operands) Branch if Interrupt Mask Clear Branch if Minus Branch if Interrupt Mask Set Branch if Not Equal Branch if Plus Branch Always
PC (PC) + 2 + rel ? (Z) | (N V)=1 - - - - - - REL PC (PC) + 2 + rel ? (C) = 1 PC (PC) + 2 + rel ? (C) | (Z) = 1 PC (PC) + 2 + rel ? (N V) = 1 PC (PC) + 2 + rel ? (I) = 0 PC (PC) + 2 + rel ? (N) = 1 PC (PC) + 2 + rel ? (I) = 1 PC (PC) + 2 + rel ? (Z) = 0 PC (PC) + 2 + rel ? (N) = 0 PC (PC) + 2 + rel - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL - - - - - - REL
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 75
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles 5 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 5 4 4 5 4 6 1 2 dd 3 1 1 1 3 2 4 Source Form Operand dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd dd dd dd dd dd dd dd rr dd rr ii rr ii rr ff rr rr ff rr ff ff Address Mode Opcode 01 03 05 07 09 0B 0D 0F 21 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E AD 31 41 51 61 71 9E61 98 9A 3F 4F 5F 8C 6F 7F 9E6F Effect on CCR VH INZC
Operation
Description
BRCLR n,opr,rel Branch if Bit n in M Clear
PC (PC) + 3 + rel ? (Mn) = 0
DIR (b0) DIR (b1) DIR (b2) DIR (b3) ----- DIR (b4) DIR (b5) DIR (b6) DIR (b7) - - - - - - REL DIR (b0) DIR (b1) DIR (b2) DIR (b3) ----- DIR (b4) DIR (b5) DIR (b6) DIR (b7) DIR (b0) DIR (b1) DIR (b2) DIR (b3) ------ DIR (b4) DIR (b5) DIR (b6) DIR (b7)
Freescale Semiconductor, Inc...
BRN rel
Branch Never
PC (PC) + 2
BRSET n,opr,rel Branch if Bit n in M Set
PC (PC) + 3 + rel ? (Mn) = 1
BSET n,opr
Set Bit n in M
Mn 1
BSR rel
Branch to Subroutine
PC (PC) + 2; push (PCL) SP (SP) - 1; push (PCH) SP (SP) - 1 PC (PC) + rel
- - - - - - REL
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel CLC CLI CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear Carry Bit Clear Interrupt Mask
PC (PC) + 3 + rel ? (A) - (M) = $00 DIR IMM PC (PC) + 3 + rel ? (A) - (M) = $00 IMM PC (PC) + 3 + rel ? (X) - (M) = $00 ------ IX1+ PC (PC) + 3 + rel ? (A) - (M) = $00 IX+ PC (PC) + 2 + rel ? (A) - (M) = $00 PC (PC) + 4 + rel ? (A) - (M) = $00 SP1 C0 I0 M $00 A $00 X $00 H $00 M $00 M $00 M $00 - - - - - 0 INH - - 0 - - - INH DIR INH INH 0 - - 0 1 - INH IX1 IX SP1
Clear
Technical Data 76 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary
Cycles 2 3 4 4 3 2 4 5 4 1 1 4 3 5 3 4 2 3 4 4 3 2 4 5 2 5 3 3 5 4 6 4 1 1 4 3 5 7 Source Form CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Operand ii dd hh ll ee ff ff ff ee ff dd ff ff ii ii+1 dd ii dd hh ll ee ff ff ff ee ff dd rr rr rr ff rr rr ff rr dd ff ff Address Mode Opcode A1 B1 C1 D1 E1 F1 9EE1 9ED1 33 43 53 63 73 9E63 65 75 A3 B3 C3 D3 E3 F3 9EE3 9ED3 72 3B 4B 5B 6B 7B 9E6B 3A 4A 5A 6A 7A 9E6A 52 Effect on CCR VH INZC
Operation
Description
Compare A with M
(A) - (M)
IMM DIR EXT IX2 -- IX1 IX SP1 SP2 DIR INH INH 1 IX1 IX SP1 IMM DIR
Freescale Semiconductor, Inc...
COM opr COMA COMX COM opr,X COM ,X COM opr,SP CPHX #opr CPHX opr CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP DAA
Complement (One's Complement)
M (M) = $FF - (M) A (A) = $FF - (M) X (X) = $FF - (M) M (M) = $FF - (M) M (M) = $FF - (M) M (M) = $FF - (M) (H:X) - (M:M + 1)
0--
Compare H:X with M
--
Compare X with M
(X) - (M)
IMM DIR EXT IX2 -- IX1 IX SP1 SP2
Decimal Adjust A
(A)10
U - - INH
DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP DIV
A (A)-1 or M (M)-1 or X (X)-1 DIR PC (PC) + 3 + rel ? (result) 0 INH PC (PC) + 2 + rel ? (result) 0 PC (PC) + 2 + rel ? (result) 0 - - - - - - INH IX1 PC (PC) + 3 + rel ? (result) 0 IX PC (PC) + 2 + rel ? (result) 0 SP1 PC (PC) + 4 + rel ? (result) 0 M (M) - 1 A (A) - 1 X (X) - 1 M (M) - 1 M (M) - 1 M (M) - 1 A (H:A)/(X) H Remainder DIR INH INH - IX1 IX SP1
Decrement
--
Divide
- - - - INH
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 77
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles 2 3 4 4 3 2 4 5 4 1 1 4 3 5 2 3 4 3 2 4 5 6 5 4 2 3 4 4 3 2 4 5 3 4 2 3 4 4 3 2 4 5 4 1 1 4 3 5 Source Form EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP Operand ii dd hh ll ee ff ff ff ee ff dd ff ff dd hh ll ee ff ff dd hh ll ee ff ff ii dd hh ll ee ff ff ff ee ff ii jj dd ii dd hh ll ee ff ff ff ee ff dd ff ff Address Mode Opcode A8 B8 C8 D8 E8 F8 9EE8 9ED8 3C 4C 5C 6C 7C 9E6C BC CC DC EC FC BD CD DD ED FD A6 B6 C6 D6 E6 F6 9EE6 9ED6 45 55 AE BE CE DE EE FE 9EEE 9EDE 38 48 58 68 78 9E68 Effect on CCR VH INZC
Operation
Description
Exclusive OR M with A
A (A M)
0--
IMM DIR EXT IX2 - IX1 IX SP1 SP2 DIR INH INH - IX1 IX SP1
Freescale Semiconductor, Inc...
INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDHX #opr LDHX opr LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP
Increment
M (M) + 1 A (A) + 1 X (X) + 1 M (M) + 1 M (M) + 1 M (M) + 1
--
Jump
PC Jump Address
DIR EXT - - - - - - IX2 IX1 IX DIR EXT - - - - - - IX2 IX1 IX IMM DIR EXT IX2 - IX1 IX SP1 SP2 - IMM DIR
Jump to Subroutine
PC (PC) + n (n = 1, 2, or 3) Push (PCL); SP (SP) - 1 Push (PCH); SP (SP) - 1 PC Unconditional Address
Load A from M
A (M)
0--
Load H:X from M
H:X (M:M + 1)
0--
Load X from M
X (M)
0--
IMM DIR EXT IX2 - IX1 IX SP1 SP2
Logical Shift Left (Same as ASL)
C b7 b0
0
DIR INH INH -- IX1 IX SP1
Technical Data 78 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary
Cycles 4 1 1 4 3 5 5 4 4 4 5 dd 4 1 1 4 3 5 1 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 2 2 2 2 2 2 dd 4 1 1 4 3 5 Source Form LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr MUL NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP NOP NSA ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP PSHA PSHH PSHX PULA PULH PULX ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Operand dd ff ff dd dd dd ii dd dd ff ff ff ff Address Mode Opcode 34 44 54 64 74 9E64 4E 5E 6E 7E 42 30 40 50 60 70 9E60 9D 62 AA BA CA DA EA FA 9EEA 9EDA 87 8B 89 86 8A 88 39 49 59 69 79 9E69 Effect on CCR VH INZC
Operation
Description
Logical Shift Right
0 b7 b0
C
DIR INH INH --0 IX1 IX SP1 DD DIX+ - IMD IX+D
Freescale Semiconductor, Inc...
(M)Destination (M)Source Move H:X (H:X) + 1 (IX+D, DIX+) Unsigned multiply X:A (X) x (A) M -(M) = $00 - (M) A -(A) = $00 - (A) X -(X) = $00 - (X) M -(M) = $00 - (M) M -(M) = $00 - (M) None A (A[3:0]:A[7:4])
0--
- 0 - - - 0 INH DIR INH INH -- IX1 IX SP1
Negate (Two's Complement)
No Operation Nibble Swap A
- - - - - - INH - - - - - - INH IMM DIR EXT IX2 - IX1 IX SP1 SP2
Inclusive OR A and M
A (A) | (M)
0--
Push A onto Stack Push H onto Stack Push X onto Stack Pull A from Stack Pull H from Stack Pull X from Stack
Push (A); SP (SP) - 1 Push (H); SP (SP) - 1 Push (X); SP (SP) - 1 SP (SP + 1); Pull (A) SP (SP + 1); Pull (H) SP (SP + 1); Pull (X)
- - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH - - - - - - INH DIR INH INH -- IX1 IX SP1
Rotate Left through Carry
C b7 b0
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 79
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles 4 1 1 4 3 5 1 7 4 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 1 2 dd hh ll ee ff ff ff ee ff dd 3 4 4 3 2 4 5 4 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 Source Form ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP RSP Operand dd ff ff Address Mode Opcode 36 46 56 66 76 9E66 9C 80 81 A2 B2 C2 D2 E2 F2 9EE2 9ED2 99 9B B7 C7 D7 E7 F7 9EE7 9ED7 35 8E BF CF DF EF FF 9EEF 9EDF Effect on CCR VH INZC
Operation
Description
Rotate Right through Carry
b7 b0
C
DIR INH INH -- IX1 IX SP1
Reset Stack Pointer
SP $FF SP (SP) + 1; Pull (CCR) SP (SP) + 1; Pull (A) SP (SP) + 1; Pull (X) SP (SP) + 1; Pull (PCH) SP (SP) + 1; Pull (PCL) SP SP + 1; Pull (PCH) SP SP + 1; Pull (PCL)
- - - - - - INH
Freescale Semiconductor, Inc...
RTI
Return from Interrupt
INH
RTS SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP SEC SEI STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP STHX opr STOP STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP
Return from Subroutine
- - - - - - INH IMM DIR EXT IX2 -- IX1 IX SP1 SP2
Subtract with Carry
A (A) - (M) - (C)
Set Carry Bit Set Interrupt Mask
C1 I1
- - - - - 1 INH - - 1 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2 - DIR
Store A in M
M (A)
0--
Store H:X in M Enable IRQ Pin; Stop Oscillator
(M:M + 1) (H:X) I 0; Stop Oscillator
0--
- - 0 - - - INH DIR EXT IX2 - IX1 IX SP1 SP2
Store X in M
M (X)
0--
Technical Data 80 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) Opcode Map
Table 6-1. Instruction Set Summary
Cycles 2 3 4 4 3 2 4 5 9 2 1 1 dd 3 1 1 3 2 4 2 1 2 Source Form SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Operand ii dd hh ll ee ff ff ff ee ff ff ff Address Mode Opcode A0 B0 C0 D0 E0 F0 9EE0 9ED0 83 84 97 85 3D 4D 5D 6D 7D 9E6D 95 9F 94 Effect on CCR VH INZC
Operation
Description
Subtract
A (A) - (M)
IMM DIR EXT IX2 -- IX1 IX SP1 SP2
Freescale Semiconductor, Inc...
SWI
Software Interrupt
PC (PC) + 1; Push (PCL) SP (SP) - 1; Push (PCH) SP (SP) - 1; Push (X) SP (SP) - 1; Push (A) SP (SP) - 1; Push (CCR) SP (SP) - 1; I 1 PCH Interrupt Vector High Byte PCL Interrupt Vector Low Byte CCR (A) X (A) A (CCR)
- - 1 - - - INH
TAP TAX TPA TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP TSX TXA TXS
Transfer A to CCR Transfer A to X Transfer CCR to A
INH - - - - - - INH - - - - - - INH DIR INH INH - IX1 IX SP1
Test for Negative or Zero
(A) - $00 or (X) - $00 or (M) - $00
0--
Transfer SP to H:X Transfer X to A Transfer H:X to SP
H:X (SP) + 1 A (X) (SP) (H:X) - 1
- - - - - - INH - - - - - - INH - - - - - - INH
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
Technical Data 81
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary
Cycles Source Form A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Operand Address Mode Opcode Effect on CCR VH INZC Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & |
Operation
Description
Freescale Semiconductor, Inc...
() -( ) #
? : --
Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two's complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected
Technical Data 82 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc...
Table 6-2. Opcode Map
Branch REL DIR 3 4 5 6 9E6 7 8 9 A B C D 9ED E 9EE INH SP1 IX IMM DIR EXT IX1 SP1 IX F 2 Read-Modify-Write INH IX1 Control INH INH Register/Memory IX2 SP2
Bit Manipulation DIR DIR
MOTOROLA
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
MSB LSB
MSB
0
1
LSB
0 4 4 4 4 4 4 4 4 4 4 4 4
MC68HC908JL8 -- Rev. 2.0
2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 5 SUB SP2 5 CMP SP2 5 SBC SP2 5 CPX SP2 5 AND SP2 5 BIT SP2 5 LDA SP2 5 STA SP2 5 EOR SP2 5 ADC SP2 5 ORA SP2 5 ADD SP2 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 4 4 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX SP2 2 IX1 5 3 STX STX SP2 2 IX1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX 0 Low Byte of Opcode in Hexadecimal 0 SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment High Byte of Opcode in Hexadecimal 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode
1
2
3
4
5
6
7
8
9
A
B
Freescale Semiconductor, Inc.
Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
C
D
E
F
5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR
4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR
Central Processor Unit (CPU) Opcode Map
Technical Data
Inherent REL Relative Immediate IX Indexed, No Offset Direct IX1 Indexed, 8-Bit Offset Extended IX2 Indexed, 16-Bit Offset Direct-Direct IMD Immediate-Direct Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions
INH IMM DIR EXT DD IX+D
83
Freescale Semiconductor, Inc.
Central Processor Unit (CPU)
Freescale Semiconductor, Inc...
Technical Data 84 Central Processor Unit (CPU) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 7. System Integration Module (SIM)
7.1 Contents
7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Freescale Semiconductor, Inc...
7.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 89 7.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3.2 Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . . . 89 7.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 89 7.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 91 7.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 93 7.4.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.4.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . 94 7.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 94 7.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 94 7.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .95 7.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 100 7.6.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 7.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 102
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 85
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 7.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.1 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . 105 7.8.2 Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . 106 7.8.3 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 108
Freescale Semiconductor, Inc...
7.2 Introduction
This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: * Bus clock generation and control for CPU and peripherals - Stop/wait/reset/break entry and recovery - Internal clock control * * Master reset control, including power-on reset (POR) and COP timeout Interrupt control: - Acknowledge timing - Arbitration control timing - Vector address generation * * CPU enable/disable timing Modular architecture expandable to 128 interrupt sources
Technical Data 86 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Introduction
MODULE STOP MODULE WAIT STOP/WAIT CONTROL CPU STOP (FROM CPU) CPU WAIT (FROM CPU) SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK
ICLK (FROM OSCILLATOR) OSCOUT (FROM OSCILLATOR)
Freescale Semiconductor, Inc...
/2
VDD CLOCK CONTROL CLOCK GENERATORS INTERNAL CLOCKS
INTERNAL PULL-UP
RESET PIN LOGIC
POR CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER MASTER RESET CONTROL
ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP TIMEOUT (FROM COP MODULE) USB RESET (FROM USB MODULE)
RESET
INTERRUPT CONTROL AND PRIORITY DECODE
INTERRUPT SOURCES CPU INTERFACE
Figure 7-1. SIM Block Diagram Table 7-1. Signal Name Conventions
Signal Name ICLK OSCOUT IAB IDB PORRST IRST R/W Internal oscillator clock The XTAL or RC frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCOUT / 2) Internal address bus Internal data bus Signal from the power-on reset module to the SIM Internal reset signal Read/write signal Description
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 87
Freescale Semiconductor, Inc.
System Integration Module (SIM)
Addr.
Register Name Read: Break Status Register Write: (BSR) Reset:
Bit 7 R 0
6 R 0
5 R 0
4 R 0
3 R 0
2 R
1 SBSW
Bit 0 R
$FE00
NOTE 0 0 0
Note: Writing a logic 0 clears SBSW. Read: $FE01 Reset Status Register Write: (RSR) POR: Read: R $FE02 Reserved Write: Reset: Read: Break Flag Control Register Write: (BFCR) Reset: Read: $FE04 Interrupt Status Register 1 Write: (INT1) Reset: Read: $FE05 Interrupt Status Register 2 Write: (INT2) Reset: Read: $FE06 Interrupt Status Register 3 Write: (INT3) Reset: BCFE 0 IF6 R 0 IF14 R 0 0 R 0 IF5 R 0 IF13 R 0 0 R 0 IF4 R 0 IF12 R 0 0 R 0 IF3 R 0 IF11 R 0 0 R 0 0 R 0 0 R 0 0 R 0 R IF1 R 0 0 R 0 0 R 0 = Reserved 0 R 0 IF8 R 0 0 R 0 0 R 0 IF7 R 0 IF15 R 0 R R R R R R R R R R R R R R POR PIN COP ILOP ILAD MODRST LVI 0
Freescale Semiconductor, Inc...
1
0
0
0
0
0
0
0
$FE03
= Unimplemented
Figure 7-2. SIM I/O Register Summary
Technical Data 88 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Bus Clock Control and Generation
7.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 7-3.
From OSCILLATOR From OSCILLATOR
ICLK OSCOUT
SIM COUNTER
/2
BUS CLOCK GENERATORS
Freescale Semiconductor, Inc...
OSCOUT is OSC frequency divided by 2
SIM
Figure 7-3. SIM Clock Signals 7.3.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency divided by four. 7.3.2 Clock Start-Up from POR or LVI Reset When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. 7.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time-out. This time-out is selectable as 4096 or 32 ICLK cycles. (See 7.7.2 Stop Mode.) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 89
Freescale Semiconductor, Inc.
System Integration Module (SIM) 7.4 Reset and System Initialization
The MCU has these reset sources: * * * * * * Power-on reset module (POR) External reset pin (RST) Computer operating properly module (COP) Low-voltage inhibit module (LVI) Illegal opcode Illegal address
Freescale Semiconductor, Inc...
All of these resets produce the vector $FFFE-$FFFF ($FEFE-$FEFF in Monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the reset status register (RSR). (See 7.8 SIM Registers.) 7.4.1 External Pin Reset The RST pin circuits include an internal pull-up device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum of 67 ICLK cycles, assuming that the POR was not the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing. Table 7-2. PIN Bit Set Timing
Reset Type POR All others Number of Cycles Required to Set PIN 4163 (4096 + 64 + 3) 67 (64 + 3)
ICLK RST IAB PC VECT H VECT L
Figure 7-4. External Reset Timing
Technical Data 90 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Reset and System Initialization
7.4.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP time-out, or POR. (See Figure 7-6 . Sources of Internal Reset.) Note that for POR resets, the SIM cycles through 4096 ICLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-5.
Freescale Semiconductor, Inc...
IRST
RST
RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES
ICLK
IAB
VECTOR HIGH
Figure 7-5. Internal Reset Timing The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST POR LVI INTERNAL RESET
Figure 7-6. Sources of Internal Reset The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 91
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.4.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, the following events occur:
Freescale Semiconductor, Inc...
* * * * * *
A POR pulse is generated. The internal reset signal is asserted. The SIM enables OSCOUT. Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization of the oscillator. The RST pin is driven low during the oscillator stabilization time. The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared.
OSC1
PORRST 4096 CYCLES ICLK 32 CYCLES 32 CYCLES
OSCOUT
RST
IAB
$FFFE
$FFFF
Figure 7-7. POR Recovery
Technical Data 92 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Reset and System Initialization
7.4.2.2 Computer Operating Properly (COP) Reset
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module time-out, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every (212 - 24) ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time-out. The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module.
Freescale Semiconductor, Inc...
7.4.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the reset status register (RSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources.
7.4.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 93
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.4.2.5 Low-Voltage Inhibit (LVI) Reset
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTRIP. The LVI bit in the reset status register (RSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the RST pin for all internal reset sources.
Freescale Semiconductor, Inc...
7.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of ICLK.
7.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine.
7.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1).
Technical Data 94 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
7.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter. (See 7.7.2 Stop Mode for details.) The SIM counter is free-running after all reset states. (See 7.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences.)
7.6 Exception Control
Freescale Semiconductor, Inc...
Normal, sequential program execution can be changed in three different ways: * Interrupts - Maskable hardware CPU interrupts - Non-maskable software interrupt instruction (SWI) * * Reset Break interrupts
7.6.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 7-8 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 95
Freescale Semiconductor, Inc.
System Integration Module (SIM)
FROM RESET
BREAK INTERRUPT? I BIT SET? NO
YES
YES
I BIT SET?
Freescale Semiconductor, Inc...
NO
IRQ INTERRUPT? NO
YES
TIMER 1 INTERRUPT? NO (As many interrupts as exist on chip)
YES
STACK CPU REGISTERS. SET I BIT. LOAD PC WITH INTERRUPT VECTOR.
FETCH NEXT INSTRUCTION
SWI INSTRUCTION? NO
YES
RTI INSTRUCTION? NO
YES
UNSTACK CPU REGISTERS.
EXECUTE INSTRUCTION.
Figure 7-8. Interrupt Processing
Technical Data 96 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-9 shows interrupt entry timing. Figure 7-10 shows interrupt recovery timing.
MODULE INTERRUPT I BIT
Freescale Semiconductor, Inc...
IAB
DUMMY
SP
SP - 1
SP - 2
SP - 3
SP - 4
VECT H
VECT L
START ADDR
IDB
DUMMY
PC - 1[7:0] PC - 1[15:8]
X
A
CCR
V DATA H
V DATA L
OPCODE
R/W
Figure 7-9. Interrupt Entry
MODULE INTERRUPT I BIT
IAB
SP - 4
SP - 3
SP - 2
SP - 1
SP
PC
PC + 1
IDB
CCR
A
X
PC - 1[15:8] PC - 1[7:0]
OPCODE
OPERAND
R/W
Figure 7-10. Interrupt Recovery
7.6.1.1 Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 97
Freescale Semiconductor, Inc.
System Integration Module (SIM)
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.
CLI LDA #$FF BACKGROUND ROUTINE
Freescale Semiconductor, Inc...
INT1
PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI
INT2
PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI
Figure 7-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.
Technical Data 98 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
7.6.1.2 SWI Instruction
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does not push PC - 1, as a hardware interrupt does.
7.6.2 Interrupt Status Registers
Freescale Semiconductor, Inc...
The flags in the interrupt status registers identify maskable interrupt sources. Table 7-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 7-3. Interrupt Sources
Priority Highest Reset SWI Instruction IRQ Pin Timer 1 Channel 0 Interrupt Timer 1 Channel 1 Interrupt Timer 1 Overflow Interrupt Timer 2 Channel 0 Interrupt Timer 2 Channel 1 Interrupt Timer 2 Overflow Interrupt Source Flag -- -- IRQF CH0F CH1F TOF CH0F CH1F TOF OR NF FE PE SCRF IDLE SCTE TC KEYF COCO Mask1(1) -- -- IMASK CH0IE CH1IE TOIE CH0IE CH1IE TOIE ORIE NEIE FEIE PEIE SCRIE ILIE SCTIE TCIE IMASKK AIEN INT Flag -- -- IF1 IF3 IF4 IF5 IF6 IF7 IF8 Vector Address $FFFE-$FFFF $FFFC-$FFFD $FFFA-$FFFB $FFF6-$FFF7 $FFF4-$FFF5 $FFF2-$FFF3 $FFF0-$FFF1 $FFEE-$FFEF $FFEC-$FFED
SCI Error
IF11
$FFE6-$FFE7
SCI Receive SCI Transmit Keyboard Interrupt Lowest ADC Conversion Complete Interrupt
IF12 IF13 IF14 IF15
$FFE4-$FFE5 $FFE2-$FFE3 $FFE0-$FFE1 $FFDE-$FFDF
NOTES: 1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 99
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.6.2.1 Interrupt Status Register 1
Address: $FE04 Bit 7 Read: Write: Reset: IF6 R 0 R 6 IF5 R 0 = Reserved 5 IF4 R 0 4 IF3 R 0 3 0 R 0 2 IF1 R 0 1 0 R 0 Bit 0 0 R 0
Freescale Semiconductor, Inc...
Figure 7-12. Interrupt Status Register 1 (INT1) IF1, IF3 to IF6 -- Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0, 1, and 3 -- Always read 0
7.6.2.2 Interrupt Status Register 2
Address: $FE05 Bit 7 Read: Write: Reset: IF14 R 0 R 6 IF13 R 0 = Reserved 5 IF12 R 0 4 IF11 R 0 3 0 R 0 2 0 R 0 1 IF8 R 0 Bit 0 IF7 R 0
Figure 7-13. Interrupt Status Register 2 (INT2) IF7, IF8, IF11 to F14 -- Interrupt Flags This flag indicates the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 2 and 3 -- Always read 0
Technical Data 100 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Exception Control
7.6.2.3 Interrupt Status Register 3
Address: $FE06 Bit 7 Read: Write: Reset: 0 R 0 R 6 0 R 0 = Reserved 5 0 R 0 4 0 R 0 3 0 R 0 2 0 R 0 1 0 R 0 Bit 0 IF15 R 0
Freescale Semiconductor, Inc...
Figure 7-14. Interrupt Status Register 3 (INT3) IF15 -- Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 1 to 7 -- Always read 0
7.6.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated.
7.6.4 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See Section 18. Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 101
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.6.5 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information.
Freescale Semiconductor, Inc...
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism -- for example, a read of one register followed by the read or write of another -- are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal.
7.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low-powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 7.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-15 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.
Technical Data 102 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) Low-Power Modes
Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option register is logic zero, then the computer operating properly module (COP) is enabled and remains active in wait mode.
IAB WAIT ADDR WAIT ADDR + 1 SAME SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
Freescale Semiconductor, Inc...
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.
Figure 7-15. Wait Mode Entry Timing Figure 7-16 and Figure 7-17 show the timing for WAIT recovery.
IAB $6E0B $6E0C $00FF $00FE $00FD $00FC
IDB
$A6
$A6
$A6
$01
$0B
$6E
EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
Figure 7-16. Wait Recovery from Interrupt or Break
32 Cycles IAB $6E0B
32 Cycles RST VCT H RST VCTL
IDB
$A6
$A6
$A6
RST
ICLK
Figure 7-17. Wait Recovery from Internal Reset
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com Technical Data 103
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (OSCOUT) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode.
Freescale Semiconductor, Inc...
NOTE:
External crystal applications should use the full stop recovery time by clearing the SSREC bit. A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register (BSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-18 shows stop mode entry timing.
NOTE:
To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0.
CPUSTOP
IAB
STOP ADDR
STOP ADDR + 1
SAME
SAME
IDB
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.
Figure 7-18. Stop Mode Entry Timing
Technical Data 104 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Registers
STOP RECOVERY PERIOD ICLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP - 1
SP - 2
SP - 3
Figure 7-19. Stop Mode Recovery from Interrupt or Break
Freescale Semiconductor, Inc...
7.8 SIM Registers
The SIM has three memory mapped registers. * * * Break Status Register (BSR) Reset Status Register (RSR) Break Flag Control Register (BFCR)
7.8.1 Break Status Register (BSR) The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.
Address: $FE00 Bit 7 Read: R Write: Reset: R = Reserved R R R R R 6 5 4 3 2 1 SBSW Note(1) 0 1. Writing a logic zero clears SBSW. R Bit 0
Figure 7-20. Break Status Register (BSR)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 105
Freescale Semiconductor, Inc.
System Integration Module (SIM)
SBSW -- SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this. Writing zero to the SBSW bit clears it.
; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the ; break service routine software. HIBYTE LOBYTE ; EQU EQU 5 6
Freescale Semiconductor, Inc...
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,BSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited ; by break. ; If RETURNLO is not zero, ; then just decrement low byte. ; Else deal with high byte, too. ; Point to WAIT/STOP opcode. ; Restore H register.
7.8.2 Reset Status Register (RSR) This register contains six flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register.
Technical Data 106 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
System Integration Module (SIM) SIM Registers
Address:
$FE01 Bit 7 6 PIN 5 COP 4 ILOP 3 ILAD 2 MODRST 1 LVI Bit 0 0
Read: Write: POR:
POR
1
0
0
0
0
0
0
0
= Unimplemented
Figure 7-21. Reset Status Register (RSR)
Freescale Semiconductor, Inc...
POR -- Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of RSR PIN -- External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of RSR COP -- Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of RSR ILOP -- Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of RSR ILAD -- Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of RSR MODRST -- Monitor Mode Entry Module Reset bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQ = VDD 0 = POR or read of RSR LVI -- Low Voltage Inhibit Reset bit 1 = Last reset caused by LVI circuit 0 = POR or read of RSR
MC68HC908JL8 -- Rev. 2.0 MOTOROLA System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 107
Freescale Semiconductor, Inc.
System Integration Module (SIM)
7.8.3 Break Flag Control Register (BFCR) The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address:
$FE03 Bit 7 6 R 5 R 4 R 3 R 2 R 1 R Bit 0 R
Read: BCFE
Freescale Semiconductor, Inc...
Write: Reset: 0 R = Reserved
Figure 7-22. Break Flag Control Register (BFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
Technical Data 108 System Integration Module (SIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 8. Oscillator (OSC)
8.1 Contents
8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Freescale Semiconductor, Inc...
8.3 Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3.1 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 8.3.2 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.4 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.5.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . 114 8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) . 115 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 115 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . 115 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . 115 8.5.6 Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . 115 8.5.7 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.5.8 Internal Oscillator Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . 116 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 116
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
Technical Data 109
Freescale Semiconductor, Inc.
Oscillator (OSC) 8.2 Introduction
The oscillator module provides the reference clocks for the MCU system and bus. Two oscillators are running on the device:
Selectable oscillator -- for bus clock
* Crystal oscillator (XTAL) -- built-in oscillator that requires an external crystal or ceramic-resonator. This option also allows an external clock that can be driven directly into OSC1. RC oscillator (RC) -- built-in oscillator that requires an external resistor-capacitor connection only.
Freescale Semiconductor, Inc...
*
The selected oscillator is used to drive the bus clock, the SIM, and other modules on the MCU. The oscillator type is selected by programming a bit FLASH memory. The RC and crystal oscillator cannot run concurrently; one is disabled while the other is selected; because the RC and XTAL circuits share the same OSC1 pin.
Non-selectable oscillator -- for COP
* Internal oscillator -- built-in RC oscillator that requires no external components.
This internal oscillator is used to drive the computer operating properly (COP) module and the SIM. The internal oscillator runs continuously after a POR or reset, and is always available.
Technical Data 110 Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Oscillator (OSC) Oscillator Selection
8.3 Oscillator Selection
The oscillator type is selected by programming a bit in a FLASH memory location; the mask option register (MOR), at $FFD0. (See 5.6 Mask Option Register (MOR).)
NOTE:
On the ROM device, the oscillator is selected by a ROM-mask layer at factory.
Address: $FFD0 Bit 7 Read: OSCSEL Write: Erased: Reset: 1 1 1 1 1 1 1 1 R R R R R R R 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Unaffected by reset
Non-volatile FLASH register; write by programming. R = Reserved
Figure 8-1. Mask Option Register (MOR) OSCSEL -- Oscillator Select Bit OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is logic 1, selecting the crystal oscillator option. This bit is unaffected by reset. 1 = Crystal oscillator 0 = RC oscillator Bits 6-0 -- Should be left as logic 1's.
NOTE:
When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is used as OSC2; other functions such as PTA6/KBI6 will not be available.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
Technical Data 111
Freescale Semiconductor, Inc.
Oscillator (OSC)
8.3.1 XTAL Oscillator The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide accurate clock source. In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown in Figure 8-2. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components:
Freescale Semiconductor, Inc...
* * * * *
Crystal, X1 Fixed capacitor, C1 Tuning capacitor, C2 (can also be a fixed capacitor) Feedback resistor, RB Series resistor, RS (optional)
To SIM 2OSCOUT To SIM OSCOUT
From SIM
XTALCLK SIMOSCEN
/2
MCU
OSC1 RB OSC2
R S* X1 *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer's data. See Section 19. for component value requirements. C1 C2
Figure 8-2. XTAL Oscillator External Connections
Technical Data 112 Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Oscillator (OSC) Oscillator Selection
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer's data for more information.
8.3.2 RC Oscillator The RC oscillator circuit is designed for use with external resistor and capacitor to provide a clock source with tolerance less than 10%.
Freescale Semiconductor, Inc...
In its typical configuration, the RC oscillator requires two external components, one R and one C. Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10% tolerance. The oscillator configuration uses two components: * * CEXT REXT
To SIM 2OSCOUT To SIM OSCOUT
From SIM
SIMOSCEN
EN
EXT-RC OSCILLATOR
RCCLK
/2
0 PTA6 I/O
1
PTA6 PTA6EN
MCU
OSC1 RCCLK/PTA6 (OSC2)
VDD
REXT
CEXT
See Section 19. for component value requirements.
Figure 8-3. RC Oscillator External Connections
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
Technical Data 113
Freescale Semiconductor, Inc.
Oscillator (OSC) 8.4 Internal Oscillator
The internal oscillator clock (ICLK) is a free running 50-kHz clock that requires no external components. It is used as the reference clock input to the computer operating properly (COP) module and the SIM. The internal oscillator by default is always available and is free running after POR or reset. It can be stopped in stop mode by setting the STOP_ICLKDIS bit before executing the STOP instruction.
Freescale Semiconductor, Inc...
Figure 8-4 shows the logical representation of components of the internal oscillator circuitry.
From SIM SIMOSCEN To SIM and COP ICLK
CONFIG2 STOP_ICLKDIS EN INTERNAL OSCILLATOR
Figure 8-4. Internal Oscillator
NOTE:
The internal oscillator is a free running oscillator and is available after each POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS bit in CONFIG2 (see 5.5 Configuration Register 2 (CONFIG2)).
8.5 I/O Signals
The following paragraphs describe the oscillator I/O signals. 8.5.1 Crystal Amplifier Input Pin (OSC1) OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.
Technical Data 114 Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Oscillator (OSC) I/O Signals
8.5.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) For the XTAL oscillator, OSC2 pin is the output of the crystal oscillator inverting amplifier. For the RC oscillator, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of the RC oscillator, RCCLK.
Oscillator XTAL OSC2 pin function Inverting OSC1 Controlled by PTA6EN bit in PTAPUE ($000D) PTA6EN = 0: RCCLK output PTA6EN = 1: PTA6/KBI6
Freescale Semiconductor, Inc...
RC
8.5.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the XTAL oscillator circuit or the RC-oscillator. 8.5.4 XTAL Oscillator Clock (XTALCLK) XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 8-2 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start-up. 8.5.5 RC Oscillator Clock (RCCLK) RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the external R and C. Figure 8-3 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry. 8.5.6 Oscillator Out 2 (2OSCOUT) 2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com Technical Data 115
Freescale Semiconductor, Inc.
Oscillator (OSC)
8.5.7 Oscillator Out (OSCOUT) The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency.
8.5.8 Internal Oscillator Clock (ICLK)
Freescale Semiconductor, Inc...
ICLK is the internal oscillator output signal (typically 50-kHz), for the COP module and the SIM. Its frequency depends on the VDD voltage. (See Section 19. Electrical Specifications for ICLK parameters.)
8.6 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes. 8.6.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. OSCOUT, 2OSCOUT, and ICLK continues to drive to the SIM module. 8.6.2 Stop Mode The STOP instruction disables the XTALCLK or the RCCLK output, hence, OSCOUT and 2OSCOUT are disabled. The STOP instruction also turns off the ICLK input to the COP module if the STOP_ICLKDIS bit is set in configuration register 2 (CONFIG2). After reset, the STOP_ICLKDIS bit is clear by default and ICLK is enabled during stop mode.
8.7 Oscillator During Break Mode
The OSCOUT, 2OSCOUT, and ICLK clocks continue to be driven out when the device enters the break state.
Technical Data 116 Oscillator (OSC) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 9. Monitor ROM (MON)
9.1 Contents
9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Freescale Semiconductor, Inc...
9.3
9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.2 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 9.4.4 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.4.5 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 9.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 9.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 9.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 9.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 9.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. This mode is also used for programming and erasing of FLASH memory in the MCU. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com Technical Data 117
Freescale Semiconductor, Inc.
Monitor ROM (MON) 9.3 Features
Features of the monitor ROM include the following: * * * Normal user-mode pin functionality One pin dedicated to serial communication between monitor ROM and host computer Standard mark/space non-return-to-zero (NRZ) communication with host computer Execution of code in RAM or FLASH FLASH memory security feature1 FLASH memory programming interface 959 bytes monitor ROM code size Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) Standard monitor mode entry if high voltage, VTST, is applied to IRQ Resident routines for FLASH programming and EEPROM emulation
Freescale Semiconductor, Inc...
* * * * * * *
9.4 Functional Description
The monitor ROM receives and executes commands from a host computer. Figure 9-1 shows a example circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute host-computer code in RAM while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTB0 pin. A level-shifting and multiplexing interface is required between PTB0 and the host computer. PTB0 is used in a wired-OR configuration and requires a pull-up resistor.
1. No security feature is absolutely secure. However, Motorola's strategy is to make reading or copying the FLASH difficult for unauthorized users.
Technical Data 118 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
RST 0.1 F
HC908JL8
VDD VDD EXT OSC (50% DUTY) 0.1 F OSC1 VSS VDD
Freescale Semiconductor, Inc...
EXT OSC CONNECTION TO OSC1, WITH OSC2 UNCONNECTED, CAN REPLACE XTAL CIRCUIT. 9.8304MHz 20 pF 10M
OSC1
OSC2 20 pF MAX232 1 1 F + 3 4 1 F + 5 C2- DB9 2 3 5 7 8 10 9 2 74HC125 3 1 10 k C (SEE NOTE 2) NOTES: 1. Monitor mode entry method: SW1: Position A -- High voltage entry (VTST) Bus clock depends on SW2. SW1: Position B -- Reset vector must be blank ($FFFE = $FFFF = $FF) Bus clock = OSC1 / 4. 2. Affects high voltage entry to monitor mode only (SW1 at position A): SW2: Position C -- Bus clock = OSC1 / 4 SW2: Position D -- Bus clock = OSC1 / 2 5. See Table 19-4 for VTST voltage level requirements. D 10 k 10 k SW2 10 k PTB1 PTB3 PTB2 V- 6 + 1 F 74HC125 5 6 4 VDD VDD 10 k C1+ VCC 16 + 15 + 2 XTAL CIRCUIT 1 F 1 F VTST VDD 1k 8.5 V B 10 k VDD A SW1 VDD
C1- C2+
GND V+
(SEE NOTE 1) IRQ
PTB0
Figure 9-1. Monitor Mode Circuit
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com Technical Data 119
Freescale Semiconductor, Inc.
Monitor ROM (MON)
9.4.1 Entering Monitor Mode Table 9-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a POR. Communication at 9600 baud will be established provided one of the following sets of conditions is met: 1. If IRQ = VTST: - Clock on OSC1 is 4.9125MHz
Freescale Semiconductor, Inc...
- PTB3 = low 2. If IRQ = VTST: - Clock on OSC1 is 9.8304MHz - PTB3 = high 3. If $FFFE and $FFFF are blank (contain $FF): - Clock on OSC1 is 9.8304MHz - IRQ = VDD Table 9-1. Monitor Mode Entry Requirements and Options
IRQ VTST(2) VTST(1) $FFFE and $FFFF X X PTB3 PTB2 PTB1 PTB0 OSC1 Clock(1) 4.9152MHz 9.8304MHz Bus Frequency 2.4576MHz 2.4576MHz Comments High voltage entry to monitor mode. 9600 baud communication on PTB0. COP disabled. Blank reset vector (lowvoltage) entry to monitor mode. 9600 baud communication on PTB0. COP disabled. Enters User mode.
0 1
0 0
1 1
1 1
VDD
BLANK (contain $FF) NOT BLANK
X
X
X
1
9.8304MHz
2.4576MHz
VDD
X
X
X
X
X
OSC1 / 4
NOTES: 1. RC oscillator cannot be used for monitor mode; must use either external oscillator or XTAL oscillator circuit. 2. See Table 19-4 for VTST voltage level requirements.
Technical Data 120 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
Freescale Semiconductor, Inc...
If VTST is applied to IRQ and PTB3 is low upon monitor mode entry (Table 9-1 condition set 1), the bus frequency is a divide-by-two of the clock input to OSC1. If PTB3 is high with VTST applied to IRQ upon monitor mode entry (Table 9-1 condition set 2), the bus frequency is a divide-by-four of the clock input to OSC1. Holding the PTB3 pin low when entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if VTST is applied to IRQ. In this event, the OSCOUT frequency is equal to the 2OSCOUT frequency, and OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. Entering monitor mode with VTST on IRQ, the COP is disabled as long as VTST is applied to either IRQ or RST. (See Section 7. System Integration Module (SIM) for more information on modes of operation.) If entering monitor mode without high voltage on IRQ and reset vector being blank ($FFFE and $FFFF) (Table 9-1 condition set 3, where applied voltage is VDD), then all port B pin requirements and conditions, including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements when performing in-circuit programming. Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the state of IRQ or the RST. Figure 9-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and IRQ = VDD. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 121
Freescale Semiconductor, Inc.
Monitor ROM (MON)
POR RESET
IS VECTOR BLANK? YES
NO
NORMAL USER MODE
MONITOR MODE
EXECUTE MONITOR CODE
Freescale Semiconductor, Inc...
POR TRIGGERED?
NO
YES
Figure 9-2. Low-Voltage Monitor Mode Entry Flowchart Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes. (See 9.5 Security.) After the security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code.
Technical Data 122 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
Table 9-2 is a summary of the vector differences between user mode and monitor mode. Table 9-2. Monitor Mode Vector Differences
Functions Modes COP Enabled Disabled(1) Reset Vector High $FFFE $FEFE Reset Vector Low $FFFF $FEFF Break Vector High $FFFC $FEFC Break Vector Low $FFFD $FEFD SWI Vector High $FFFC $FEFC SWI Vector Low $FFFD $FEFD
User
Freescale Semiconductor, Inc...
Monitor
Notes: 1. If the high voltage (VTST) is removed from the IRQ pin or the RST pin, the SIM asserts its COP enable output. The COP is a mask option enabled or disabled by the COPD bit in the configuration register.
When the host computer has completed downloading code into the MCU RAM, the host then sends a RUN command, which executes an RTI, which sends control to the address on the stack pointer.
9.4.2 Baud Rate The communication baud rate is dependant on oscillator frequency. The state of PTB3 also affects baud rate if entry to monitor mode is by IRQ = VTST. When PTB3 is high, the divide by ratio is 1024. If the PTB3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512. Table 9-3. Monitor Baud Rate Selection
Monitor Mode Entry By: OSC1 Clock Frequency 4.9152 MHz IRQ = VTST 9.8304 MHz 4.9152 MHz Blank reset vector, IRQ = VDD 9.8304 MHz 4.9152 MHz PTB3 0 1 1 X X Baud Rate 9600 bps 9600 bps 4800 bps 9600 bps 4800 bps
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 123
Freescale Semiconductor, Inc.
Monitor ROM (MON)
9.4.3 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 9-3 and Figure 9-4.)
NEXT START BIT
START BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP BIT
Figure 9-3. Monitor Data Format
Freescale Semiconductor, Inc...
$A5 BREAK
START BIT START BIT
BIT 0 BIT 0
BIT 1 BIT 1
BIT 2 BIT 2
BIT 3 BIT 3
BIT 4 BIT 4
BIT 5 BIT 5
BIT 6 BIT 6
BIT 7 BIT 7
STOP BIT STOP BIT
NEXT START BIT NEXT START BIT
Figure 9-4. Sample Monitor Waveforms The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive baud rates must be identical.
9.4.4 Echoing As shown in Figure 9-5, the monitor ROM immediately echoes each received byte back to the PTB0 pin for error checking.
SENT TO MONITOR READ ECHO READ ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA
RESULT
Figure 9-5. Read Transaction Any result of a command appears after the echo of the last byte of the command.
Technical Data 124 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
9.4.5 Break Signal A start bit followed by nine low bits is a break signal. (See Figure 9-6.) When the monitor receives a break signal, it drives the PTB0 pin high for the duration of two bits before echoing the break signal.
MISSING STOP BIT TWO-STOP-BIT DELAY BEFORE ZERO ECHO
Freescale Semiconductor, Inc...
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-6. Break Transaction 9.4.6 Commands The monitor ROM uses the following commands: * * * * * * READ (read memory) WRITE (write memory) IREAD (indexed read) IWRITE (indexed write) READSP (read stack pointer) RUN (run user program)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 125
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 9-4. READ (Read Memory) Command
Description Operand Data Returned Opcode Read byte from memory Specifies 2-byte address in high byte:low byte order Returns contents of specified address $4A
Command Sequence
Freescale Semiconductor, Inc...
SENT TO MONITOR
READ
READ
ADDR. HIGH
ADDR. HIGH
ADDR. LOW
ADDR. LOW
DATA
ECHO
RESULT
Table 9-5. WRITE (Write Memory) Command
Description Operand Data Returned Opcode Write byte to memory Specifies 2-byte address in high byte:low byte order; low byte followed by data byte None $49
Command Sequence
SENT TO MONITOR WRITE WRITE ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW DATA DATA
ECHO
Technical Data 126 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Functional Description
Table 9-6. IREAD (Indexed Read) Command
Description Operand Data Returned Opcode Read next 2 bytes in memory from last address accessed Specifies 2-byte address in high byte:low byte order Returns contents of next two addresses $1A
Command Sequence
Freescale Semiconductor, Inc...
SENT TO MONITOR IREAD IREAD DATA DATA
ECHO
RESULT
Table 9-7. IWRITE (Indexed Write) Command
Description Operand Data Returned Opcode Write to last address accessed + 1 Specifies single data byte None $19
Command Sequence
SENT TO MONITOR IWRITE IWRITE DATA DATA
ECHO
NOTE:
A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64-Kbyte memory map.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 127
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Table 9-8. READSP (Read Stack Pointer) Command
Description Operand Data Returned Opcode Reads stack pointer None Returns stack pointer in high byte:low byte order $0C
Command Sequence
Freescale Semiconductor, Inc...
SENT TO MONITOR READSP READSP SP HIGH SP LOW
ECHO
RESULT
Table 9-9. RUN (Run User Program) Command
Description Operand Data Returned Opcode Executes RTI instruction None None $28
Command Sequence
SENT TO MONITOR RUN RUN
ECHO
Technical Data 128 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) Security
9.5 Security
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6-$FFFD. Locations $FFF6-$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6-$FFFD blank. For security reasons, program locations $FFF6-$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTB0. If the received bytes match those at locations $FFF6-$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. (See Figure 9-7.)
VDD 4096 + 32 ICLK CYCLES RST 24 BUS CYCLES COMMAND 1 BYTE 8 ECHO BYTE 2 ECHO 2 4 1 COMMAND ECHO BREAK BYTE 1 BYTE 2 BYTE 8 1
Freescale Semiconductor, Inc...
FROM HOST
PTB0 1 BYTE 1 ECHO FROM MCU 4
NOTES: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte.
Figure 9-7. Monitor Mode Entry Timing
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 129
Freescale Semiconductor, Inc.
Monitor ROM (MON)
Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6-$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank).
Freescale Semiconductor, Inc...
9.6 ROM-Resident Routines
Eight routines stored in the monitor ROM area (thus ROM-resident) are provided for FLASH memory manipulation. Six of the eight routines are intended to simplify FLASH program, erase, and load operations. The other two routines are intended to simplify the use of the FLASH memory as EEPROM. Table 9-10 shows a summary of the ROM-resident routines.
Technical Data 130 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
Table 9-10. Summary of ROM-Resident Routines
Routine Name PRGRNGE ERARNGE LDRNGE MON_PRGRNGE Routine Description Program a range of locations Erase a page or the entire array Loads data from a range of locations Program a range of locations in monitor mode Erase a page or the entire array in monitor mode Loads data from a range of locations in monitor mode Emulated EEPROM write. Data size ranges from 2 to 15 bytes at a time. Emulated EEPROM read. Data size ranges from 2 to 15 bytes at a time. Call Address $FC06 $FCBE $FF30 $FF28 $FF2C $FF24 $FD3F $FDD0 Stack Used(1) (bytes) 15 9 9 17 11 11 24 16
Freescale Semiconductor, Inc...
MON_ERARNGE MON_LDRNGE EE_WRITE EE_READ
NOTES: 1. The listed stack size excludes the 2 bytes used by the calling instruction, JSR.
The routines are designed to be called as stand-alone subroutines in the user program or monitor mode. The parameters that are passed to a routine are in the form of a contiguous data block, stored in RAM. The index register (H:X) is loaded with the address of the first byte of the data block (acting as a pointer), and the subroutine is called (JSR). Using the start address as a pointer, multiple data blocks can be used, any area of RAM be used. A data block has the control and data bytes in a defined order, as shown in Figure 9-8. During the software execution, it does not consume any dedicated RAM location, the run-time heap will extend the system stack, all other RAM location will not be affected.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 131
Freescale Semiconductor, Inc.
Monitor ROM (MON)
R
$XXXX ADDRESS AS POINTER
FILE_PTR
A
M
BUS SPEED (BUS_SPD) DATA SIZE (DATASIZE) START ADDRESS HIGH (ADDRH) START ADDRESS LOW (ADDRL) DATA 0 DATA 1 DATA BLOCK
DATA ARRAY
Freescale Semiconductor, Inc...
DATA N
Figure 9-8. Data Block Format for ROM-Resident Routines The control and data bytes are described below. * Bus speed -- This one byte indicates the operating bus speed of the MCU. The value of this byte should be equal to 4 times the bus speed, and should not be set to less than 4 (i.e. minimum bus speed is 1MHz). Data size -- This one byte indicates the number of bytes in the data array that are to be manipulated. The maximum data array size is 128. Routines EE_WRITE and EE_READ are restricted to manipulate a data array between 2 to 15 bytes. Whereas routines ERARNGE and MON_ERARNGE do not manipulate a data array, thus, this data size byte has no meaning. Start address -- These two bytes, high byte followed by low byte, indicate the start address of the FLASH memory to be manipulated. Data array -- This data array contains data that are to be manipulated. Data in this array are programmed to FLASH memory by the programming routines: PRGRNGE, MON_PRGRNGE, EE_WRITE. For the read routines: LDRNGE, MON_LDRNGE, and EE_READ, data is read from FLASH and stored in this array.
*
*
*
Technical Data 132 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
9.6.1 PRGRNGE PRGRNGE is used to program a range of FLASH locations with data loaded into the data array. Table 9-11. PRGRNGE Routine
Routine Name Routine Description Calling Address PRGRNGE Program a range of locations $FC06 15 bytes Bus speed (BUS_SPD) Data size (DATASIZE) Start address high (ADDRH) Start address (ADDRL) Data 1 (DATA1) : Data N (DATAN)
Freescale Semiconductor, Inc...
Stack Used Data Block Format
The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be programmed in one routine call is 128 bytes (max. DATASIZE is 128). ADDRH:ADDRL do not need to be at a page boundary, the routine handles any boundary misalignment during programming. A check to see that all bytes in the specified range are erased is not performed by this routine prior programming. Nor does this routine do a verification after programming, so there is no return confirmation that programming was successful. User must assure that the range specified is first erased. The coding example below is to program 32 bytes of data starting at FLASH location $EF00, with a bus speed of 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address pointer, FILE_PTR, pointing to the first byte of the data block.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 133
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ORG : FILE_PTR: BUS_SPD DATASIZE START_ADDR DATAARRAY PRGRNGE FLASH_START RAM
DS.B DS.B DS.W DS.B EQU EQU
1 1 1 32 $FC06 $EF00
; ; ; ;
Indicates 4x bus frequency Data size to be programmed FLASH start address Reserved data array
Freescale Semiconductor, Inc...
ORG FLASH INITIALISATION: MOV #20, BUS_SPD MOV #32, DATASIZE LDHX #FLASH_START STHX START_ADDR RTS MAIN: BSR INITIALISATION : : LDHX #FILE_PTR JSR PRGRNGE
Technical Data 134 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
9.6.2 ERARNGE ERARNGE is used to erase a range of locations in FLASH. Table 9-12. ERARNGE Routine
Routine Name Routine Description Calling Address Stack Used ERARNGE Erase a page or the entire array $FCBE 9 bytes Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH) Starting address (ADDRL)
Freescale Semiconductor, Inc...
Data Block Format
There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (64 consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address within the page. Calling ERARNGE with ADDRH:ADDRL equal to $FFFF will erase the entire FLASH array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass erase. To avoid undesirable routine return addresses after a mass erase, the ERARNGE routine should not be called from code executed from FLASH memory. Load the code into an area of RAM before calling the ERARNGE routine. The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not used. The coding example below is to perform a page erase, from $EF00-$EF3F. The Initialization subroutine is the same as the coding example for PRGRNGE (see 9.6.1 PRGRNGE).
ERARNGE MAIN: BSR : : LDHX JSR : EQU $FCBE
INITIALISATION
#FILE_PTR ERARNGE
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 135
Freescale Semiconductor, Inc.
Monitor ROM (MON)
9.6.3 LDRNGE LDRNGE is used to load the data array in RAM with data from a range of FLASH locations. Table 9-13. LDRNGE Routine
Routine Name Routine Description Calling Address LDRNGE Loads data from a range of locations $FF30 9 bytes Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH) Starting address (ADDRL) Data 1 : Data N
Freescale Semiconductor, Inc...
Stack Used Data Block Format
The start location of FLASH from where data is retrieved is specified by the address ADDRH:ADDRL and the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be retrieved in one routine call is 128 bytes. The data retrieved from FLASH is loaded into the data array in RAM. Previous data in the data array will be overwritten. User can use this routine to retrieve data from FLASH that was previously programmed. The coding example below is to retrieve 32 bytes of data starting from $EF00 in FLASH. The Initialization subroutine is the same as the coding example for PRGRNGE (see 9.6.1 PRGRNGE).
LDRNGE MAIN: BSR : : LDHX JSR : EQU $FF30
INITIALIZATION
#FILE_PTR LDRNGE
Technical Data 136 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
9.6.4 MON_PRGRNGE In monitor mode, MON_PRGRNGE is used to program a range of FLASH locations with data loaded into the data array. Table 9-14. MON_PRGRNGE Routine
Routine Name Routine Description Calling Address MON_PRGRNGE Program a range of locations, in monitor mode $FC28 17 bytes Bus speed Data size Starting address (high byte) Starting address (low byte) Data 1 : Data N
Freescale Semiconductor, Inc...
Stack Used Data Block Format
The MON_PRGRNGE routine is designed to be used in monitor mode. It performs the same function as the PRGRNGE routine (see 9.6.1 PRGRNGE), except that MON_PRGRNGE returns to the main program via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction will return the control back to the monitor code.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 137
Freescale Semiconductor, Inc.
Monitor ROM (MON)
9.6.5 MON_ERARNGE In monitor mode, ERARNGE is used to erase a range of locations in FLASH. Table 9-15. MON_ERARNGE Routine
Routine Name Routine Description Calling Address MON_ERARNGE Erase a page or the entire array, in monitor mode $FF2C 11 bytes Bus speed Data size Starting address (high byte) Starting address (low byte)
Freescale Semiconductor, Inc...
Stack Used Data Block Format
The MON_ERARNGE routine is designed to be used in monitor mode. It performs the same function as the ERARNGE routine (see 9.6.2 ERARNGE), except that MON_ERARNGE returns to the main program via an SWI instruction. After a MON_ERARNGE call, the SWI instruction will return the control back to the monitor code.
Technical Data 138 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
9.6.6 MON_LDRNGE In monitor mode, LDRNGE is used to load the data array in RAM with data from a range of FLASH locations. Table 9-16. ICP_LDRNGE Routine
Routine Name Routine Description Calling Address MON_LDRNGE Loads data from a range of locations, in monitor mode $FF24 11 bytes Bus speed Data size Starting address (high byte) Starting address (low byte) Data 1 : Data N
Freescale Semiconductor, Inc...
Stack Used Data Block Format
The MON_LDRNGE routine is designed to be used in monitor mode. It performs the same function as the LDRNGE routine (see 9.6.3 LDRNGE), except that MON_LDRNGE returns to the main program via an SWI instruction. After a MON_LDRNGE call, the SWI instruction will return the control back to the monitor code.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 139
Freescale Semiconductor, Inc.
Monitor ROM (MON)
9.6.7 EE_WRITE EE_WRITE is used to write a set of data from the data array to FLASH. Table 9-17. EE_WRITE Routine
Routine Name Routine Description Calling Address EE_WRITE Emulated EEPROM write. Data size ranges from 2 to 15 bytes at a time. $FD3F 24 bytes Bus speed (BUS_SPD) Data size (DATASIZE)(1) Starting address (ADDRH)(2) Starting address (ADDRL)(1) Data 1 : Data N
Freescale Semiconductor, Inc...
Stack Used Data Block Format
NOTES: 1. The minimum data size is 2 bytes. The maximum data size is 15 bytes. 2. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0.
The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the number of bytes in the data array is specified by DATASIZE. The minimum number of bytes that can be programmed in one routine call is 2 bytes, the maximum is 15 bytes. ADDRH:ADDRL must always be the start of boundary address (the page start address: $XX00, $XX40, $XX80, or $00C0) and DATASIZE must be the same size when accessing the same page. In some applications, the user may want to repeatedly store and read a set of data from an area of non-volatile memory. This is easily possible when using an EEPROM array. As the write and erase operations can be executed on a byte basis. For FLASH memory, the minimum erase size is the page -- 64 bytes per page for MC68HC908JL8. If the data array size is less than the page size, writing and erasing to the same page cannot fully utilize the page. Unused locations in the page will be wasted. The EE_WRITE routine is designed to emulate the properties similar to the EEPROM. Allowing a more efficient use of the FLASH page for data storage.
Technical Data 140 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
When the user dedicates a page of FLASH for data storage, and the size of the data array defined, each call of the EE_WRTIE routine will automatically transfer the data in the data array (in RAM) to the next blank block of locations in the FLASH page. Once a page is filled up, the EE_WRITE routine automatically erases the page, and starts to reuse the page again. In the 64-byte page, an 4-byte control block is used by the routine to monitor the utilization of the page. In effect, only 60 bytes are used for data storage. (see Figure 9-9). The page control operations are transparent to the user.
Freescale Semiconductor, Inc...
FLASH
PAGE BOUNDARY CONTROL: 8 BYTES DATA ARRAY DATA ARRAY DATA ARRAY ONE PAGE = 64 BYTES $XX00, $XX40, $XX80, OR $XXC0
PAGE BOUNDARY
Figure 9-9. EE_WRITE FLASH Memory Usage When using this routine to store a 3-byte data array, the FLASH page can be programmed 20 times before the an erase is required. In effect, the write/erase endurance is increased by 20 times. When a 15-byte data array is used, the write/erase endurance is increased by 5 times. Due to the FLASH page size limitation, the data array is limited from 2 bytes to 15 bytes. The coding example below uses the $EF00-$EE3F page for data storage. The data array size is 15 bytes, and the bus speed is 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address pointer, FILE_PTR, pointing to the first byte of the data block.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
Technical Data 141
Freescale Semiconductor, Inc.
Monitor ROM (MON)
ORG : FILE_PTR: BUS_SPD DATASIZE START_ADDR DATAARRAY EE_WRITE FLASH_START RAM
DS.B DS.B DS.W DS.B EQU EQU
1 1 1 15 $FD3F $EF00
; ; ; ;
Indicates 4x bus frequency Data size to be programmed FLASH starting address Reserved data array
Freescale Semiconductor, Inc...
ORG FLASH INITIALISATION: MOV #20, BUS_SPD MOV #15, DATASIZE LDHX #FLASH_START STHX START_ADDR RTS MAIN: BSR INITIALISATION : : LHDX #FILE_PTR JSR EE_WRITE
NOTE:
The EE_WRITE routine is unable to check for incorrect data blocks, such as the FLASH page boundary address and data size. It is the responsibility of the user to ensure the starting address indicated in the data block is at the FLASH page boundary and the data size is 2 to 15. If the FLASH page is already programmed with a data array with a different size, the EE_WRITE call will be ignored.
Technical Data 142 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Monitor ROM (MON) ROM-Resident Routines
9.6.8 EE_READ EE_READ is used to load the data array in RAM with a set of data from FLASH. Table 9-18. EE_READ Routine
Routine Name Routine Description EE_READ Emulated EEPROM read. Data size ranges from 2 to 15 bytes at a time. $FDD0 16 bytes Bus speed (BUS_SPD) Data size (DATASIZE) Starting address (ADDRH)(1) Starting address (ADDRL)(1) Data 1 : Data N
Freescale Semiconductor, Inc...
Calling Address Stack Used Data Block Format
NOTES: 1. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0.
The EE_READ routine reads data stored by the EE_WRITE routine. An EE_READ call will retrieve the last data written to a FLASH page and loaded into the data array in RAM. Same as EE_WRITE, the data size indicated by DATASIZE is 2 to 15, and the start address ADDRH:ADDRL must the FLASH page boundary address. The coding example below uses the data stored by the EE_WRITE coding example (see 9.6.7 EE_WRITE). It loads the 15-byte data set stored in the $EF00-$EE7F page to the data array in RAM. The initialization subroutine is the same as the coding example for EE_WRITE (see 9.6.7 EE_WRITE).
EE_READ MAIN: BSR : : LDHX JSR : MC68HC908JL8 -- Rev. 2.0 MOTOROLA Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com INITIALIZATION EQU $FDD0
FILE_PTR EE_READ
Technical Data 143
Freescale Semiconductor, Inc.
Monitor ROM (MON)
NOTE:
The EE_READ routine is unable to check for incorrect data blocks, such as the FLASH page boundary address and data size. It is the responsibility of the user to ensure the starting address indicated in the data block is at the FLASH page boundary and the data size is 2 to 15. If the FLASH page is programmed with a data array with a different size, the EE_READ call will be ignored.
Freescale Semiconductor, Inc...
Technical Data 144 Monitor ROM (MON) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 10. Timer Interface Module (TIM)
10.1 Contents
10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Freescale Semiconductor, Inc...
10.3 10.4
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 152 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . 153 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 153 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 154 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 155 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 10.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.1 TIM Clock Pin (T2CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 10.9.2 TIM Channel I/O Pins (T1CH0, T1CH1, T2CH0, T2CH1) . 159 10.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 160 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 163 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .164 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com Technical Data 145
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) 10.2 Introduction
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with Input capture, output compare, and pulse-width-modulation functions. Figure 10-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.
Freescale Semiconductor, Inc...
10.3 Features
Features of the TIM include: * Two input capture/output compare channels: - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action * * Buffered and unbuffered pulse-width-modulation (PWM) signal generation Programmable TIM clock input - 7-frequency internal bus clock prescaler selection - External clock input on timer 2 (bus frequency /2 maximum) * * * Free-running or modulo up-count operation Toggle any channel pin on overflow TIM counter stop and reset bits
Technical Data 146 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Pin Name Conventions
10.4 Pin Name Conventions
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The external clock input for TIM2 is shared with the an ADC channel pin. The full names of the TIM I/O pins are listed in Table 10-1. The generic pin names appear in the text that follows.
Freescale Semiconductor, Inc...
Table 10-1. Pin Name Conventions
TIM Generic Pin Names: Full TIM Pin Names: TIM1 TIM2 T[1,2]CH0 PTD4/T1CH0 PTE0/T2CH0 T[1,2]CH1 PTD5/T1CH1 PTE1/T2CH1 T2CLK -- ADC12/T2CLK
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.
10.5 Functional Description
Figure 10-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 147
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
T2CLK (FOR TIM2 ONLY) PRESCALER SELECT INTERNAL BUS CLOCK TSTOP TRST 16-BIT COUNTER 16-BIT COMPARATOR PRESCALER
PS2
PS1
PS0
TOF TOIE
INTERRUPT LOGIC
Freescale Semiconductor, Inc...
TMODH:TMODL TOV0 CHANNEL 0 16-BIT COMPARATOR TCH0H:TCH0L 16-BIT LATCH MS0A MS0B TOV1 INTERNAL BUS CHANNEL 1 16-BIT COMPARATOR TCH1H:TCH1L 16-BIT LATCH MS0A CH1F CH01IE CH1IE INTERRUPT LOGIC ELS0B ELS0A CH1MAX PORT LOGIC T[1,2]CH1 CH0IE CH0F INTERRUPT LOGIC ELS0B ELS0A CH0MAX PORT LOGIC T[1,2]CH0
Figure 10-1. TIM Block Diagram Figure 10-2 summarizes the timer registers.
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC.
Technical Data 148 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Addr.
Register Name Read: TIM1 Status and Control Register Write: (T1SC) Reset: Read: TIM1 Counter Register High Write: (T1CNTH) Reset: Read: TIM1 Counter Register Low Write: (T1CNTL) Reset: Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM1 Counter Modulo Register Low Write: (T1MODL) Reset: Read: TIM1 Channel 0 Status and Control Register Write: (T1SC0) Reset: Read: TIM1 Channel 0 Register High Write: (T1CH0H) Reset: Read: TIM1 Channel 0 Register Low Write: (T1CH0L) Reset: Read: TIM1 Channel 1 Status and Control Register Write: (T1SC1) Reset:
Bit 7 TOF
6 TOIE
5 TSTOP
4 0 TRST
3 0
2 PS2
1 PS1 0 9
Bit 0 PS0 0 Bit 8
$0020
0 0 Bit 15 0 14 1 13
0 12
0 11
0 10
$0021
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
Freescale Semiconductor, Inc...
$0022
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0023
$0024
$0025
0 0 Bit 15 0 14
$0026
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$0027
Indeterminate after reset CH1F CH1IE 0 0 0 0 0 0 0 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX
$0028
= Unimplemented
Figure 10-2. TIM I/O Register Summary (Sheet 1 of 3)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 149
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
Addr.
Register Name Read: TIM1 Channel 1 Register High Write: (T1CH1H) Reset: Read: TIM1 Channel 1 Register Low Write: (T1CH1L) Reset: Read: TIM2 Status and Control Register Write: (T2SC) Reset: Read: TIM2 Counter Register High Write: (T2CNTH) Reset: Read: TIM2 Counter Register Low Write: (T2CNTL) Reset: Read: TIM2 Counter Modulo Register High Write: (T2MODH) Reset: Read: TIM2 Counter Modulo Register Low Write: (T2MODL) Reset: Read: TIM2 Channel 0 Status and Control Register Write: (T2SC0) Reset: Read: TIM2 Channel 0 Register High Write: (T2CH0H) Reset:
Bit 7 Bit 15
6 14
5 13
4 12
3 11
2 10
1 9
Bit 0 Bit 8
$0029
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$002A
Indeterminate after reset TOF TOIE 0 0 Bit 15 0 14 1 13 TSTOP TRST 0 12 0 11 0 10 0 9 0 Bit 8 0 0 PS2 PS1 PS0
Freescale Semiconductor, Inc...
$0030
$0031
0 Bit 7
0 6
0 5
0 4
0 3
0 2
0 1
0 Bit 0
$0032
0 Bit 15 1 Bit 7 1 CH0F
0 14 1 6 1 CH0IE
0 13 1 5 1 MS0B 0 13
0 12 1 4 1 MS0A 0 12
0 11 1 3 1 ELS0B 0 11
0 10 1 2 1 ELS0A 0 10
0 9 1 1 1 TOV0 0 9
0 Bit 8 1 Bit 0 1 CH0MAX 0 Bit 8
$0033
$0034
$0035
0 0 Bit 15 0 14
$0036
Indeterminate after reset = Unimplemented
Figure 10-2. TIM I/O Register Summary (Sheet 2 of 3)
Technical Data 150 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Addr.
Register Name Read: TIM2 Channel 0 Register Low Write: (T2CH0L) Reset: Read: TIM2 Channel 1 Status and Control Register Write: (T2SC1) Reset: Read: TIM2 Channel 1 Register High Write: (T2CH1H) Reset: Read: TIM2 Channel 1 Register Low Write: (T2CH1L) Reset:
Bit 7 Bit 7
6 6
5 5
4 4
3 3
2 2
1 1
Bit 0 Bit 0
$0037
Indeterminate after reset CH1F CH1IE 0 0 Bit 15 0 14 0 13 0 12 0 11 0 10 0 9 0 Bit 8 0 MS1A ELS1B ELS1A TOV1 CH1MAX
$0038
Freescale Semiconductor, Inc...
$0039
Indeterminate after reset Bit 7 6 5 4 3 2 1 Bit 0
$003A
Indeterminate after reset = Unimplemented
Figure 10-2. TIM I/O Register Summary (Sheet 3 of 3) 10.5.1 TIM Counter Prescaler The TIM1 clock source can be one of the seven prescaler outputs; TIM2 clock source can be one of the seven prescaler outputs or the TIM2 clock pin, T2CLK. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source.
10.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 151
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
10.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests.
10.5.3.1 Unbuffered Output Compare
Freescale Semiconductor, Inc...
Any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: * When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period.
*
Technical Data 152 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
10.5.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
Freescale Semiconductor, Inc...
NOTE:
In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares.
10.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 10-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 153
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 10.10.1 TIM Status and Control Register.
OVERFLOW OVERFLOW OVERFLOW
PERIOD
Freescale Semiconductor, Inc...
PULSE WIDTH TCHx
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 10-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%.
10.5.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as described in 10.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written.
Technical Data 154 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Functional Description
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: * When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period.
*
Freescale Semiconductor, Inc...
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value.
10.5.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 155
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals.
10.5.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure:
Freescale Semiconductor, Inc...
1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 10-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 10-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.
Technical Data 156 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) Interrupts
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. (See 10.10.4 TIM Channel Status and Control Registers.)
Freescale Semiconductor, Inc...
10.6 Interrupts
The following TIM sources can generate interrupt requests: * TIM overflow flag (TOF) -- The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. TIM channel flags (CH1F:CH0F) -- The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register.
*
10.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 157
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
10.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction.
Freescale Semiconductor, Inc...
10.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt.
10.8 TIM During Break Interrupts
A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 Break Flag Control Register (BFCR).) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
Technical Data 158 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Signals
10.9 I/O Signals
Port D shares two of its pins with TIM1 and port E shares two of its pins with TIM2. The ADC12/T2CLK pin is an external clock input to TIM2. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1.
10.9.1 TIM Clock Pin (ADC12/T2CLK) ADC12/T2CLK is an external clock input that can be the clock source for the TIM2 counter instead of the prescaled internal bus clock. Select the ADC12/T2CLK input by writing logic 1's to the three prescaler select bits, PS[2:0]. (See 10.10.1 TIM Status and Control Register.) The minimum T2CLK pulse width, T2CLKLMIN or T2CLKHMIN, is: 1 ------------------------------------ + t SU bus frequency The maximum T2CLK frequency is: bus frequency / 2 ADC12/T2CLK is available as a ADC input channel pin when not used as the TIM2 clock input.
Freescale Semiconductor, Inc...
10.9.2 TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1) Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
Technical Data 159
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) 10.10 I/O Registers
NOTE:
References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC AND T2SC. These I/O registers control and monitor operation of the TIM: * * TIM status and control register (TSC) TIM counter registers (TCNTH:TCNTL) TIM counter modulo registers (TMODH:TMODL) TIM channel status and control registers (TSC0, TSC1) TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)
Freescale Semiconductor, Inc...
* * *
10.10.1 TIM Status and Control Register The TIM status and control register (TSC): * * * * * Enables TIM overflow interrupts Flags TIM overflows Stops the TIM counter Resets the TIM counter Prescales the TIM counter clock
Address: T1SC, $0020 and T2SC, $0030 Bit 7 Read: Write: Reset: TOF TOIE 0 0 0 1 TSTOP TRST 0 0 0 0 0 6 5 4 0 3 0 PS2 PS1 PS0 2 1 Bit 0
= Unimplemented
Figure 10-4. TIM Status and Control Register (TSC)
Technical Data 160 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
TOF -- TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE -- TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP -- TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active
Freescale Semiconductor, Inc...
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST -- TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000.
Technical Data Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com 161
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
PS[2:0] -- Prescaler Select Bits These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 10-2 shows. Reset clears the PS[2:0] bits. Table 10-2. Prescaler Selection
PS2 0 0 PS1 0 0 1 1 0 0 1 1 PS0 0 1 0 1 0 1 0 1 TIM Clock Source Internal bus clock / 1 Internal bus clock / 2 Internal bus clock / 4 Internal bus clock / 8 Internal bus clock / 16 Internal bus clock / 32 Internal bus clock / 64 T2CLK (for TIM2 only)
Freescale Semiconductor, Inc...
0 0 1 1 1 1
10.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break.
Address: T1CNTH, $0021 and T2CNTH, $0031 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 15 6 14 5 13 4 12 3 11 2 10 1 9 Bit 0 Bit 8
= Unimplemented
Figure 10-5. TIM Counter Registers High (TCNTH)
Technical Data 162 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
Address: T1CNTL, $0022 and T2CNTL, $0032 Bit 7 Read: Write: Reset: 0 0 0 0 0 0 0 0 Bit 7 6 6 5 5 4 4 3 3 2 2 1 1 Bit 0 Bit 0
= Unimplemented
Figure 10-6. TIM Counter Registers Low (TCNTL)
Freescale Semiconductor, Inc...
10.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.
Address: T1MODH, $0023 and T2MODH, $0033 Bit 7 Read: Bit 15 Write: Reset: 1 1 1 1 1 1 1 1 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 10-7. TIM Counter Modulo Register High (TMODH)
Address: T1MODL, $0024 and T2MODL, $0034 Bit 7 Read: Bit 7 Write: Reset: 1 1 1 1 1 1 1 1 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 10-8. TIM Counter Modulo Register Low (TMODL)
NOTE:
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Reset the TIM counter before writing to the TIM counter modulo registers.
Technical Data Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com 163
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
10.10.4 TIM Channel Status and Control Registers Each of the TIM channel status and control registers: * * * * * Flags input captures and output compares Enables input capture and output compare interrupts Selects input capture, output compare, or PWM operation Selects high, low, or toggling output on output compare Selects rising edge, falling edge, or any edge as the active input capture trigger Selects output toggling on TIM overflow Selects 0% and 100% PWM duty cycle Selects buffered or unbuffered output compare/PWM operation
Freescale Semiconductor, Inc...
* * *
Address: T1SC0, $0025 and T2SC0, $0035 Bit 7 Read: Write: Reset: CH0F CH0IE 0 0 0 0 0 0 0 0 0 MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 6 5 4 3 2 1 Bit 0
Figure 10-9. TIM Channel 0 Status and Control Register (TSC0)
Address: T1SC1, $0028 and T2SC1, $0038 Bit 7 Read: Write: Reset: CH1F CH1IE 0 0 0 0 0 0 0 0 0 6 5 0 MS1A ELS1B ELS1A TOV1 CH1MAX 4 3 2 1 Bit 0
Figure 10-10. TIM Channel 1 Status and Control Register (TSC1)
Technical Data 164 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
CHxF -- Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE -- Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB -- Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA -- Mode Select Bit A When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 10-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com Technical Data 165
Freescale Semiconductor, Inc...
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See Table 10-3. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA -- Edge/Level Select Bits
Freescale Semiconductor, Inc...
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 10-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 10-3. Mode, Edge, and Level Selection
MSxB:MSxA X0 X1 00 00 00 01 01 01 1X 1X 1X ELSxB:ELSxA 00 Output preset 00 01 10 11 01 10 11 01 10 11 Output compare or PWM Buffered output compare or buffered PWM Input capture Pin under port control; initial output level low Capture on rising edge only Capture on falling edge only Capture on rising or falling edge Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare Mode Configuration Pin under port control; initial output level high
Technical Data 166 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Timer Interface Module (TIM) I/O Registers
NOTE:
Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks. TOVx -- Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow 0 = Channel x pin does not toggle on TIM counter overflow
Freescale Semiconductor, Inc...
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX -- Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 10-11 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.
OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW
PERIOD TCHx
OUTPUT COMPARE CHxMAX
OUTPUT COMPARE
OUTPUT COMPARE
OUTPUT COMPARE
Figure 10-11. CHxMAX Latency 10.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com Technical Data 167
Freescale Semiconductor, Inc.
Timer Interface Module (TIM)
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written.
Address: T1CH0H, $0026 and T2CH0H, $0036 Bit 7 6 14 5 13 4 12 3 11 2 10 1 9 Bit 0 Bit 8
Freescale Semiconductor, Inc...
Read: Bit 15 Write: Reset: Indeterminate after reset
Figure 10-12. TIM Channel 0 Register High (TCH0H)
Address: T1CH0L, $0027 and T2CH0L $0037 Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 10-13. TIM Channel 0 Register Low (TCH0L)
Address: T1CH1H, $0029 and T2CH1H, $0039 Bit 7 Read: Bit 15 Write: Reset: Indeterminate after reset 14 13 12 11 10 9 Bit 8 6 5 4 3 2 1 Bit 0
Figure 10-14. TIM Channel 1 Register High (TCH1H)
Address: T1CH1L, $002A and T2CH1L, $003A Bit 7 Read: Bit 7 Write: Reset: Indeterminate after reset 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 10-15. TIM Channel 1 Register Low (TCH1L)
Technical Data 168 Timer Interface Module (TIM) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 11. Serial Communications Interface (SCI)
11.1 Contents
11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Freescale Semiconductor, Inc...
11.3 11.4
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 11.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 11.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 177 11.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . . 179 11.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 179 11.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 11.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 11.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 11.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .188 11.5.3.8 Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . . 189
11.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 169
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
11.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 11.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 11.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 11.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 11.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 11.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 11.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 11.9.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Freescale Semiconductor, Inc...
11.2 Introduction
This section describes the serial communications interface (SCI) module, which allows high-speed asynchronous communications with peripheral devices and other MCUs.
NOTE:
References to DMA (direct-memory access) and associated functions are only valid if the MCU has a DMA module. This MCU does not have the DMA function. Any DMA-related register bits should be left in their reset state for normal MCU operation.
11.3 Features
Features of the SCI module include the following: * * * * * * * Full-duplex operation Standard mark/space non-return-to-zero (NRZ) format 32 programmable baud rates Programmable 8-bit or 9-bit character length Separately enabled transmitter and receiver Separate receiver and transmitter CPU interrupt requests Programmable transmitter output polarity
Technical Data 170 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Features
*
Two receiver wakeup methods: - Idle line wakeup - Address mark wakeup
*
Interrupt-driven operation with eight interrupt flags: - Transmitter empty - Transmission complete - Receiver full
Freescale Semiconductor, Inc...
- Idle receiver input - Receiver overrun - Noise error - Framing error - Parity error * * * * Receiver framing error detection Hardware parity checking 1/16 bit-time noise detection OSCOUT as baud rate clock source
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 171
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) 11.4 Pin Name Conventions
The generic names of the SCI I/O pins are: * * RxD (receive data) TxD (transmit data)
The SCI I/O (input/output) lines are dedicated pins for the SCI module. Table 11-1 shows the full names and the generic names of the SCI I/O pins.
Freescale Semiconductor, Inc...
The generic pin names appear in the text of this section. Table 11-1. Pin Name Conventions
Generic Pin Names: Full Pin Names: RxD PTD7/RxD TxD PTD6/TxD
11.5 Functional Description
Figure 11-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The baud rate clock source for the SCI is OSCOUT clock.
Technical Data 172 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
INTERNAL BUS
SCI DATA REGISTER TRANSMITTER INTERRUPT CONTROL RECEIVER INTERRUPT CONTROL DMA INTERRUPT CONTROL ERROR INTERRUPT CONTROL
SCI DATA REGISTER TRANSMIT SHIFT REGISTER
RxD
RECEIVE SHIFT REGISTER
TxD
TXINV SCTIE TCIE
R8 T8
Freescale Semiconductor, Inc...
SCRIE ILIE TE RE RWU SBK SCTE TC SCRF IDLE OR NF FE PE LOOPS LOOPS WAKEUP CONTROL RECEIVE CONTROL FLAG CONTROL M WAKE ILTY OSCOUT ENSCI
DMARE DMATE
ORIE NEIE FEIE PEIE
TRANSMIT CONTROL
ENSCI
BKF RPF
/4
PRESCALER
BAUD DIVIDER
PEN PTY DATA SELECTION CONTROL
/ 16
Figure 11-1. SCI Module Block Diagram
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 173
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
Addr.
Register Name Read:
Bit 7
6 ENSCI 0 TCIE 0 T8
5 TXINV 0 SCRIE 0 DMARE 0 SCRF
4 M 0 ILIE 0 DMATE 0 IDLE
3 WAKE 0 TE 0 ORIE 0 OR
2 ILTY 0 RE 0 NEIE 0 NF
1 PEN 0 RWU 0 FEIE 0 FE
Bit 0 PTY 0 SBK 0 PEIE 0 PE
$0013
LOOPS SCI Control Register 1 Write: (SCC1) Reset: 0 Read: SCI Control Register 2 Write: (SCC2) Reset: Read: SCI Control Register 3 Write: (SCC3) Reset: Read: SCI Status Register 1 Write: (SCS1) Reset: Read: SCI Status Register 2 Write: (SCS2) Reset: Read: SCI Data Register Write: (SCDR) Reset: Read: SCI Baud Rate Register Write: (SCBR) Reset: SCTIE 0 R8
$0014
Freescale Semiconductor, Inc...
$0015
U SCTE
U TC
$0016
1
1
0
0
0
0
0 BKF
0 RPF
$0017
0 R7 T7
0 R6 T6
0 R5 T5
0 R4 T4
0 R3 T3
0 R2 T2
0 R1 T1
0 R0 T0
$0018
Unaffected by reset 0 0 SCP1 0 0 0 SCP0 0 R = Reserved R 0 SCR2 0 U = Unaffected SCR1 0 SCR0 0
$0019
= Unimplemented
Figure 11-2. SCI I/O Register Summary
Technical Data 174 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
11.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 11-3.
8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6
PARITY BIT BIT 7 STOP BIT
NEXT START BIT
Freescale Semiconductor, Inc...
9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7
PARITY BIT BIT 8 STOP BIT
NEXT START BIT
Figure 11-3. SCI Data Formats
11.5.2 Transmitter Figure 11-4 shows the structure of the SCI transmitter. The baud rate clock source for the SCI is the OSCOUT clock.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 175
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
INTERNAL BUS
OSCOUT
/4
PRESCALER
BAUD DIVIDER
/ 16
SCI DATA REGISTER
Freescale Semiconductor, Inc...
SCP0 SCR1 SCR2 SCR0 TRANSMITTER CPU INTERRUPT REQUEST TRANSMITTER DMA SERVICE REQUEST TXINV
H
8 MSB
7
6
5
4
3
2
1
0
START L
SCP1 STOP
11-BIT TRANSMIT SHIFT REGISTER
TxD
M SHIFT ENABLE PEN PTY PARITY GENERATION LOAD FROM SCDR
PREAMBLE ALL 1s
T8 DMATE DMATE SCTIE SCTE DMATE SCTE SCTIE TC TCIE
TRANSMITTER CONTROL LOGIC
SCTE
LOOPS SCTIE TC TCIE ENSCI TE
Figure 11-4. SCI Transmitter
Technical Data 176 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
BREAK ALL 0s SBK
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
11.5.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8).
11.5.2.2 Character Transmission
Freescale Semiconductor, Inc...
During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port pin.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 177
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.5.2.3 Break Characters
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: * * * * * * Sets the framing error bit (FE) in SCS1 Sets the SCI receiver full bit (SCRF) in SCS1 Clears the SCI data register (SCDR) Clears the R8 bit in SCC3 Sets the break flag bit (BKF) in SCS2 May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits
Freescale Semiconductor, Inc...
11.5.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted.
Technical Data 178 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. Toggle the TE bit for a queued idle character when the SCTE bit becomes set and just before writing the next byte to the SCDR.
11.5.2.5 Inversion of Transmitted Output
Freescale Semiconductor, Inc...
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. (See 11.9.1 SCI Control Register 1.)
11.5.2.6 Transmitter Interrupts
These conditions can generate CPU interrupt requests from the SCI transmitter: * SCI transmitter empty (SCTE) -- The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. Transmission complete (TC) -- The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests.
*
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 179
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.5.3 Receiver Figure 11-5 shows the structure of the SCI receiver.
11.5.3.1 Character Length
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).
Freescale Semiconductor, Inc...
11.5.3.2 Character Reception
During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request.
Technical Data 180 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
INTERNAL BUS
SCR1 SCP1 SCP0 OSCOUT SCR2 SCR0 START 0 L RWU PRESCALER BAUD DIVIDER SCI DATA REGISTER
STOP
/4
/ 16
DATA RECOVERY
11-BIT RECEIVE SHIFT REGISTER 8 7 6 5 4 3 2 1
RxD
H
Freescale Semiconductor, Inc...
ALL 1s
BKF RPF ERROR CPU INTERRUPT REQUEST DMA SERVICE REQUEST
ALL 0s MSB
CPU INTERRUPT REQUEST
M WAKE ILTY PEN PTY WAKEUP LOGIC PARITY CHECKING IDLE ILIE DMARE SCRF SCRIE DMARE SCRF SCRIE DMARE OR ORIE NF NEIE FE FEIE PE PEIE
SCRF IDLE
R8
ILIE
SCRIE
DMARE OR ORIE NF NEIE FE FEIE PE PEIE
Figure 11-5. SCI Receiver Block Diagram
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 181
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.5.3.3 Data Sampling
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following times (see Figure 11-6): * * After every start bit After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0)
Freescale Semiconductor, Inc...
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.
START BIT RxD
LSB
SAMPLES
START BIT QUALIFICATION
START BIT VERIFICATION
DATA SAMPLING
RT CLOCK RT10 RT11 RT12 RT13 RT14 RT15 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT1 RT2 RT3 RT4 RT CLOCK STATE RT CLOCK RESET RT16
Figure 11-6. Receiver Data Sampling
Technical Data 182 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 11-2 summarizes the results of the start bit verification samples. Table 11-2. Start Bit Verification
RT3, RT5, and RT7 Samples 000 001 Start Bit Verification Yes Yes Yes No Yes No No No Noise Flag 0 1 1 0 1 0 0 0
Freescale Semiconductor, Inc...
010 011 100 101 110 111
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-3 summarizes the results of the data bit samples. Table 11-3. Data Bit Recovery
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111 Data Bit Determination 0 0 0 1 0 1 1 1 Noise Flag 0 1 1 1 1 1 1 0
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 183
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
NOTE:
The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-4 summarizes the results of the stop bit samples. Table 11-4. Stop Bit Recovery
Freescale Semiconductor, Inc...
RT8, RT9, and RT10 Samples 000 001 010 011 100 101 110 111
Framing Error Flag 1 1 1 0 1 0 0 0
Noise Flag 0 1 1 1 1 1 1 0
11.5.3.4 Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set.
11.5.3.5 Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur.
Technical Data 184 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. Slow Data Tolerance Figure 11-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10.
Freescale Semiconductor, Inc...
MSB
STOP
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 11-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 11-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times x 16 RT cycles + 3 RT cycles = 147 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is 154 - 147 x 100 = 4.54% ------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 11-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles + 3 RT cycles = 163 RT cycles.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 185
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 - 163 x 100 = 4.12% ------------------------170 Fast Data Tolerance Figure 11-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10.
Freescale Semiconductor, Inc...
STOP
IDLE OR NEXT CHARACTER
RT10
RT11
RT12
RT13
RT14
RT15
DATA SAMPLES
Figure 11-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times x 16 RT cycles + 10 RT cycles = 154 RT cycles. With the misaligned character shown in Figure 11-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times x 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is * 154 - 160 x 100 = 3.90% ------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times x 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 11-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times x 16 RT cycles = 176 RT cycles.
Technical Data 186 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
RT16
RT1
RT2
RT3
RT4
RT5
RT6
RT7
RT8
RT9
RECEIVER RT CLOCK
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Functional Description
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is 170 - 176 x 100 = 3.53% ------------------------170
11.5.3.6 Receiver Wakeup
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: * Address mark -- An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, software can set the RWU bit and put the receiver back into the standby state. Idle input line condition -- When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit.
Freescale Semiconductor, Inc...
*
NOTE:
With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 187
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.5.3.7 Receiver Interrupts
The following sources can generate CPU interrupt requests from the SCI receiver: * SCI receiver full (SCRF) -- The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. Idle input (IDLE) -- The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests.
Freescale Semiconductor, Inc...
*
11.5.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt requests: * Receiver overrun (OR) -- The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. Noise flag (NF) -- The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests. Framing error (FE) -- The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. Parity error (PE) -- The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests.
MC68HC908JL8 -- Rev. 2.0 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
*
*
*
Technical Data 188
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) Low-Power Modes
11.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 11.6.1 Wait Mode The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. Refer to 7.7 Low-Power Modes for information on exiting wait mode. 11.6.2 Stop Mode The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not affect SCI register states. SCI module operation resumes after an external interrupt. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Refer to 7.7 Low-Power Modes for information on exiting stop mode.
Freescale Semiconductor, Inc...
11.7 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 189
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit.
Freescale Semiconductor, Inc...
11.8 I/O Signals
The two SCI I/O pins are: * * 11.8.1 TxD (Transmit Data) The PTD6/TxD pin is the serial data output from the SCI transmitter. 11.8.2 RxD (Receive Data) The PTD7/RxD pin is the serial data input to the SCI receiver. PTD6/TxD -- Transmit data PTD7/RxD -- Receive data
11.9 I/O Registers
These I/O registers control and monitor SCI operation: * * * * * * * SCI control register 1 (SCC1) SCI control register 2 (SCC2) SCI control register 3 (SCC3) SCI status register 1 (SCS1) SCI status register 2 (SCS2) SCI data register (SCDR) SCI baud rate register (SCBR)
Technical Data 190 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
11.9.1 SCI Control Register 1 SCI control register 1: * * * * * Enables loop mode operation Enables the SCI Controls output polarity Controls character length Controls SCI wakeup method Controls idle character detection Enables parity function Controls parity type
$0013 Bit 7 Read: LOOPS Write: Reset: 0 0 0 0 0 0 0 0 ENSCI TXINV M WAKE ILTY PEN PTY 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
* * *
Address:
Figure 11-9. SCI Control Register 1 (SCC1) LOOPS -- Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI -- Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 191
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
TXINV -- Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted
NOTE:
Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. M -- Mode (Character Length) Bit
Freescale Semiconductor, Inc...
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 11-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters WAKE -- Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY -- Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit 0 = Idle character bit count begins after start bit
Technical Data 192 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
PEN -- Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 11-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 11-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled PTY -- Parity Bit This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 11-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity
Freescale Semiconductor, Inc...
NOTE:
Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 11-5. Character Format Selection
Control Bits M 0 1 0 0 1 1 PEN and PTY 0X 0X 10 11 10 11 Start Bits 1 1 1 1 1 1 Data Bits 8 9 7 7 8 8 Character Format Parity None None Even Odd Even Odd Stop Bits 1 1 1 1 1 1 Character Length 10 bits 11 bits 10 bits 10 bits 11 bits 11 bits
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 193
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.9.2 SCI Control Register 2 SCI control register 2: * Enables the following CPU interrupt requests: - Enables the SCTE bit to generate transmitter CPU interrupt requests - Enables the TC bit to generate transmitter CPU interrupt requests
Freescale Semiconductor, Inc...
- Enables the SCRF bit to generate receiver CPU interrupt requests - Enables the IDLE bit to generate receiver CPU interrupt requests * * * *
Address:
Enables the transmitter Enables the receiver Enables SCI wakeup Transmits SCI break characters
$0014 Bit 7 6 TCIE 0 5 SCRIE 0 4 ILIE 0 3 TE 0 2 RE 0 1 RWU 0 Bit 0 SBK 0
Read: SCTIE Write: Reset: 0
Figure 11-10. SCI Control Register 2 (SCC2) SCTIE -- SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt
Technical Data 194 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
TCIE -- Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE -- SCI Receive Interrupt Enable Bit This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE -- Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests TE -- Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled
Freescale Semiconductor, Inc...
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RE -- Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 195
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU -- Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK -- Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted
Freescale Semiconductor, Inc...
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble.
11.9.3 SCI Control Register 3 SCI control register 3: * * Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted Enables these interrupts: - Receiver overrun interrupts - Noise error interrupts - Framing error interrupts * Parity error interrupts
Technical Data 196 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
Address:
$0015 Bit 7 6 T8 5 DMARE 0 4 DMATE 0 3 ORIE 0 U = Unaffected 2 NEIE 0 1 FEIE 0 Bit 0 PEIE 0
Read: Write: Reset:
R8
U
U
= Unimplemented
Figure 11-11. SCI Control Register 3 (SCC3)
Freescale Semiconductor, Inc...
R8 -- Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other 8 bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 -- Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. DMARE -- DMA Receive Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled) 0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI receiver CPU interrupt requests enabled)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 197
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
DMATE -- DMA Transfer Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to DMARE or DMATE may adversely affect MCU performance. 1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled 0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled
Freescale Semiconductor, Inc...
ORIE -- Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE -- Receiver Noise Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled FEIE -- Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE -- Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the parity error bit, PE. (See 11.9.4 SCI Status Register 1.) Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled
Technical Data 198 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
11.9.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: * * * * * Transfer of SCDR data to transmit shift register complete Transmission complete Transfer of receive shift register data to SCDR complete Receiver input idle Receiver overrun Noisy data Framing error Parity error
$0016 Bit 7 Read: Write: Reset: 1 1 0 0 0 0 0 0 SCTE 6 TC 5 SCRF 4 IDLE 3 OR 2 NF 1 FE Bit 0 PE
Freescale Semiconductor, Inc...
* * *
Address:
= Unimplemented
Figure 11-12. SCI Status Register 1 (SCS1) SCTE -- SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 199
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
TC -- Transmission Complete Bit This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF -- SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR IDLE -- Receiver Idle Bit This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared)
Freescale Semiconductor, Inc...
Technical Data 200
MC68HC908JL8 -- Rev. 2.0 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
OR -- Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun
Freescale Semiconductor, Inc...
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 11-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after reading the data register. NF -- Receiver Noise Flag Bit This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an SCI error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected FE -- Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 201
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
NORMAL FLAG CLEARING SEQUENCE SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 3 BYTE 4 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 3
BYTE 1 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 2
BYTE 3
Freescale Semiconductor, Inc...
DELAYED FLAG CLEARING SEQUENCE SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 SCRF = 0 OR = 0 SCRF = 1 OR = 1 BYTE 2 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1
BYTE 1
BYTE 3
Figure 11-13. Flag Clearing Sequence
PE -- Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected
Technical Data 202 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
11.9.5 SCI Status Register 2 SCI status register 2 contains flags to signal the following conditions: * *
Address:
Break character detected Incoming data
$0017 Bit 7 6 5 4 3 2 1 BKF Bit 0 RPF
Freescale Semiconductor, Inc...
Read: Write: Reset: 0 0 0 0 0 0
0
0
= Unimplemented
Figure 11-14. SCI Status Register 2 (SCS2) BKF -- Break Flag Bit This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF -- Reception in Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com Technical Data 203
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
11.9.6 SCI Data Register The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register.
Address: $0018 Bit 7 Read: R7 T7 6 R6 T6 5 R5 T5 4 R4 T4 3 R3 T3 2 R2 T2 1 R1 T1 Bit 0 R0 T0
Freescale Semiconductor, Inc...
Write: Reset:
Unaffected by reset
Figure 11-15. SCI Data Register (SCDR) R7/T7-R0/T0 -- Receive/Transmit Data Bits Reading the SCDR accesses the read-only received data bits, R[7:0]. Writing to the SCDR writes the data to be transmitted, T[7:0]. Reset has no effect on the SCDR.
NOTE:
Do not use read/modify/write instructions on the SCI data register.
11.9.7 SCI Baud Rate Register The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.
Address: $0019 Bit 7 Read: Write: Reset: 0 0 0 0 0 R 0 = Reserved 0 0 0 6 0 SCP1 SCP0 R SCR2 SCR1 SCR0 5 4 3 2 1 Bit 0
= Unimplemented
Figure 11-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 -- SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 11-6. Reset clears SCP1 and SCP0.
Technical Data 204 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI) I/O Registers
Table 11-6. SCI Baud Rate Prescaling
SCP1 and SCP0 00 01 10 11 Prescaler Divisor (PD) 1 3 4 13
SCR2-SCR0 -- SCI Baud Rate Select Bits
Freescale Semiconductor, Inc...
These read/write bits select the SCI baud rate divisor as shown in Table 11-7. Reset clears SCR2-SCR0. Table 11-7. SCI Baud Rate Selection
SCR2, SCR1, and SCR0 000 001 010 011 100 101 110 111 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128
Use this formula to calculate the SCI baud rate: SCI clock source baud rate = -------------------------------------------64 x PD x BD where: SCI clock source = OSCOUT PD = prescaler divisor BD = baud rate divisor Table 11-8 shows the SCI baud rates that can be generated with a 4.9152MHz OSCOUT clock.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
Technical Data 205
Freescale Semiconductor, Inc.
Serial Communications Interface (SCI)
Table 11-8. SCI Baud Rate Selection Examples
SCP1 and SCP0 00 00 00 00 00 00 Prescaler Divisor (PD) 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 13 13 13 13 13 13 13 13 SCR2, SCR1, and SCR0 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 000 001 010 011 100 101 110 111 Baud Rate Divisor (BD) 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 Baud Rate (OSCOUT = 4.9152 MHz) 76,800 38,400 19,200 9,600 4,800 2,400 1,200 600 25,600 12,800 6,400 3,200 1,600 800 400 200 19,200 9,600 4,800 2,400 1,200 600 300 150 5,908 2,954 1,477 739 369 185 92 46
Freescale Semiconductor, Inc...
00 00 01 01 01 01 01 01 01 01 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11
Technical Data 206 Serial Communications Interface (SCI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 12. Analog-to-Digital Converter (ADC)
12.1 Contents
12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Freescale Semiconductor, Inc...
12.3
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 12.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 12.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 12.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 12.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 12.7.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 12.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 212 12.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 12.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.2 Introduction
This section describes the 13-channel, 8-bit linear successive approximation analog-to-digital converter (ADC).
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 207
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) 12.3 Features
Features of the ADC module include: * * * * 13 channels with multiplexed input Linear successive approximation with monotonicity 8-bit resolution Single or continuous conversion Conversion complete flag or conversion complete interrupt
Freescale Semiconductor, Inc...
*
Addr.
Register Name Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset:
Bit 7 COCO
6 AIEN 0 AD6
5 ADCO 0 AD5
4 ADCH4 1 AD4
3 ADCH3 1 AD3
2 ADCH2 1 AD2
1 ADCH1 1 AD1
Bit 0 ADCH0 1 AD0
$003C
0 AD7
$003D
Indeterminate after reset ADIV2 0 ADIV1 0 ADIV0 0 0 0 0 0 0
Read: ADC Input Clock Register $003E Write: (ADICLK) Reset:
0
0
0
0
0
Figure 12-1. ADC I/O Register Summary
12.4 Functional Description
Thirteen ADC channels are available for sampling external sources at pins PTB0-PTB7, PTD0-PTD3, and ADC12/T2CLK. An analog multiplexer allows the single ADC converter to select one of the 13 ADC channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is 8 bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 12-2 shows a block diagram of the ADC.
Technical Data 208 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) Functional Description
INTERNAL DATA BUS READ DDRB/DDRD DISABLE RESET WRITE PTB/PTD PTBx/PTDx ADCx DDRBx/DDRDx
WRITE DDRB/DDRD
Freescale Semiconductor, Inc...
READ PTB/PTD
DISABLE ADC CHANNEL x ADC DATA REGISTER ADC0-ADC11 ADC12
INTERRUPT LOGIC
CONVERSION COMPLETE
ADC
ADC VOLTAGE IN ADCVIN
CHANNEL SELECT (1 OF 13 CHANNELS)
ADCH[4:0]
AIEN
COCO
ADC CLOCK
BUS CLOCK
CLOCK GENERATOR
ADIV[2:0]
Figure 12-2. ADC Block Diagram
12.4.1 ADC Port I/O Pins PTB0-PTB7 and PTD0-PTD3 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register, $003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com Technical Data 209
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.
12.4.2 Voltage Conversion When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straightline linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS.
Freescale Semiconductor, Inc...
NOTE:
Input voltage should not exceed the analog supply voltages.
12.4.3 Conversion Time Fourteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1MHz, then one conversion will take 14s to complete. With a 1MHz ADC internal clock the maximum sample rate is 71.43kHz. 14 ADC Clock Cycles ADC Clock Frequency
Conversion Time =
Number of Bus Cycles = Conversion Time x Bus Frequency 12.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADC status and control register, $003C) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register.
Technical Data 210 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) Interrupts
12.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes.
12.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled.
Freescale Semiconductor, Inc...
12.6 Low-Power Modes
The following subsections describe the ADC in low-power modes.
12.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1's before executing the WAIT instruction.
12.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode.
12.7 I/O Signals
The ADC module has 12 channels that are shared with I/O port B and port D, and one channel on ADC12/T2CLK pin.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 211
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
12.7.1 ADC Voltage In (ADCVIN) ADCVIN is the input voltage signal from one of the 13 ADC channels to the ADC module.
12.8 I/O Registers
These I/O registers control and monitor ADC operation:
Freescale Semiconductor, Inc...
* * *
ADC status and control register (ADSCR) ADC data register (ADR) ADC clock register (ADICLK)
12.8.1 ADC Status and Control Register The following paragraphs describe the function of the ADC status and control register.
Address: $003C Bit 7 Read: Write: Reset: 0 0 0 1 1 1 1 1 COCO AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 6 5 4 3 2 1 Bit 0
= Unimplemented
Figure 12-3. ADC Status and Control Register (ADSCR) COCO -- Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read.
Technical Data 212 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) I/O Registers
AIEN -- ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO -- ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH[4:0] -- ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select bits are detailed in the following table. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. (See Table 12-1.) The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1.
Freescale Semiconductor, Inc...
NOTE:
Recovery from the disabled state requires one conversion cycle to stabilize.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 213
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Table 12-1. MUX Channel Select
ADCH4 0 0 0 0 0 0 ADCH3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 : 1 1 1 1 1 1 ADCH2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 : 0 0 1 1 1 1 ADCH1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 : 1 1 0 0 1 1 ADCH0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 : 0 1 0 1 0 1 -- -- Reserved Reserved VDD(2) VSS(2) ADC power off -- Unused(1) ADC Channel ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 ADC8 ADC9 ADC10 ADC11 ADC12 Input Select PTB0 PTB1 PTB2 PTB3 PTB4 PTB5 PTB6 PTB7 PTD3 PTD2 PTD1 PTD0 ADC12/T2CLK
Freescale Semiconductor, Inc...
0 0 0 0 0 0 0 0 : 1 1 1 1 1 1
NOTES: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications.
Technical Data 214 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC) I/O Registers
12.8.2 ADC Data Register One 8-bit result register is provided. This register is updated each time an ADC conversion completes.
Address: $003D Bit 7 Read: Write: AD7 6 AD6 5 AD5 4 AD4 3 AD3 2 AD2 1 AD1 Bit 0 AD0
Freescale Semiconductor, Inc...
Reset: = Unimplemented
Indeterminate after reset
Figure 12-4. ADC Data Register (ADR)
12.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC.
Address: $003E Bit 7 Read: ADIV2 Write: Reset:
0
6 ADIV1 0
5 ADIV0 0
4 0
3 0
2 0
1 0
Bit 0 0
0
0
0
0
0
= Unimplemented
Figure 12-5. ADC Input Clock Register (ADICLK) ADIV[2:0] -- ADC Clock Prescaler Bits ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 12-2 shows the available clock configurations. The ADC clock should be set to approximately 1MHz.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
Technical Data 215
Freescale Semiconductor, Inc.
Analog-to-Digital Converter (ADC)
Table 12-2. ADC Clock Divide Ratio
ADIV2 0 0 0 0 1 ADIV1 0 0 1 1 X ADIV0 0 1 0 1 X ADC Clock Rate Bus Clock / 1 Bus Clock / 2 Bus Clock / 4 Bus Clock / 8 Bus Clock / 16
Freescale Semiconductor, Inc...
X = don't care
Technical Data 216 Analog-to-Digital Converter (ADC) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 13. Input/Output (I/O) Ports
13.1 Contents
13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Freescale Semiconductor, Inc...
13.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 220 13.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 221 13.3.3 Port A Input Pull-Up Enable Registers . . . . . . . . . . . . . . . . 223 13.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 224 13.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 225 13.5 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 227 13.5.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 228 13.5.3 Port D Control Register (PDCR). . . . . . . . . . . . . . . . . . . . . 230 13.6 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . 231 13.6.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . 232
13.2 Introduction
Twenty six (26) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 217
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Addr. $0000
Register Name Read: Port A Data Register Write: (PTA) Reset: Read: Port B Data Register Write: (PTB) Reset: Read: Port D Data Register Write: (PTD) Reset:
Bit 7 PTA7
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0
$0001
Unaffected by reset PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0
$0003
Freescale Semiconductor, Inc...
Unaffected by reset DDRA6 0 DDRB6 0 DDRD6 0 DDRA5 0 DDRB5 0 DDRD5 0 DDRA4 0 DDRB4 0 DDRD4 0 DDRA3 0 DDRB3 0 DDRD3 0 DDRA2 0 DDRB2 0 DDRD2 0 DDRA1 0 DDRB1 0 DDRD1 0 PTE1 Unaffected by reset 0 0 0 0 0 0 0 0 SLOWD7 SLOWD6 PTDPU7 0 0 0 DDRE1 0 0 0 0 0 0 0 PTDPU6 0 DDRE0 0 DDRA0 0 DDRB0 0 DDRD0 0 PTE0
Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 Read: DDRD7 Data Direction Register D $0007 Write: (DDRD) Reset: 0 $0008 Read: Port E Data Register Write: (PTE) Reset: Read: Port D Control Register Write: (PDCR) Reset:
$000A
Read: Data Direction Register E $000C Write: (DDRE) Reset: $000D
Port A Input Pull-up Read: PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Enable Register Write: (PTAPUE) Reset: 0 0 0 0 0 0 0 0 PTA7 Input Pull-up Read: PTAPUE7 Enable Register Write: (PTA7PUE) Reset: 0
$000E
0
0
0
0
0
0
0
Figure 13-1. I/O Port Register Summary
Technical Data 218 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Introduction
Table 13-1. Port Control Register Bits Summary
Module Control Port Bit 0 1 2 3 A 4 5 6 7 0 1 2 3 B 4 5 6 7 0 1 2 3 D 4 5 6 7 0
E
DDR Module DDRA0 DDRA1 DDRA2 KBI DDRA3 DDRA4 DDRA5 DDRA6 DDRA7 DDRB0 DDRB1 DDRB2 DDRB3 ADC DDRB4 DDRB5 DDRB6 DDRB7 DDRD0 DDRD1 ADC DDRD2 DDRD3 DDRD4 TIM1 DDRD5 DDRD6 SCI DDRD7 DDRE0 TIM2 DDRE1 T2SC0 ($0035) T2SC1 ($0038) ELS0B:ELS0A ELS1B:ELS1A SCC1 ($0013) ENSCI T1SC1 ($0028) ELS1B:ELS1A T1SC0 ($0025) ELS0B:ELS0A ADSCR ($003C) ADCH[4:0] ADSCR ($003C) ADCH[4:0] OSC KBI KBI PTAPUE ($000D) KBIER ($001B) KBIER ($001B) KBIER ($001B) KBIE3 KBIE4 KBIE5 PTA6EN KBIE6 KBIE7 Register Control Bit KBIE0 KBIE1 KBIE2
Pin PTA0/KBI0 PTA1/KBI1 PTA2/KBI2 PTA3/KBI3 PTA4/KBI4 PTA5/KBI5 RCCLK/PTA6/KBI6(1) PTA7/KBI7 PTB0/ADC0 PTB1/ADC1 PTB2/ADC2 PTB3/ADC3 PTB4/ADC4 PTB5/ADC5 PTB6/ADC6 PTB7/ADC7 PTD0/ADC11 PTD1/ADC10 PTD2/ADC9 PTD3/ADC8 PTD4/T1CH0 PTD5/T1CH1 PTD6/TxD PTD7/RxD PTE0/T2CH0 PTE1/T2CH1
Freescale Semiconductor, Inc...
1
NOTES: 1. RCCLK/PTA6/KBI6 pin is only available when OSCSEL=0 (RC option); PTAPUE register has priority control over the port pin. RCCLK/PTA6/KBI6 is the OSC2 pin when OSCSEL=1 (XTAL option).
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 219
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports 13.3 Port A
Port A is an 8-bit special function port that shares all of its pins with the keyboard interrupt (KBI) module (see Section 15. Keyboard Interrupt Module (KBI)). Each port A pin also has software configurable pull-up device if the corresponding port pin is configured as input port. PTA0-PTA5 and PTA7 has direct LED drive capability.
NOTE:
PTA0-PTA5 pins are available on 28-pin and 32-pin packages only. PTA7 pin is available on 32-pin packages only.
Freescale Semiconductor, Inc...
13.3.1 Port A Data Register (PTA) The port A data register (PTA) contains a data latch for each of the eight port A pins.
Address: $0000 Bit 7 Read: PTA7 Write: Reset: Additional Functions: LED (Sink)
pull-up pull-up
6 PTA6
5 PTA5
4 PTA4
3 PTA3
2 PTA2
1 PTA1
Bit 0 PTA0
Unaffected by Reset LED (Sink)
pull-up
LED (Sink)
pull-up
LED (Sink)
pull-up
LED (Sink)
pull-up
LED (Sink)
pull-up
LED (Sink)
pull-up
Alternative Functions:
Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt
Figure 13-2. Port A Data Register (PTA) PTA[7:0] -- Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBI7-KBI0 -- Port A Keyboard Interrupts The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt control register (KBIER) enable the port A pins as external interrupt pins, (see Section 15. Keyboard Interrupt Module (KBI)).
Technical Data 220 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port A
13.3.2 Data Direction Register A (DDRA) Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.
NOTE:
For those devices packaged in a 28-pin package, PTA7 is not connected. DDRA7 should be set to a 1 to configure PTA7 as an output. For those devices packaged in a 20-pin package, PTA0-PTA5 and PTA7 are not connected. DDRA0-DDRA5 and DDRA7 should be set to a 1 to configure PTA0-PTA5 and PTA7 as outputs.
Address: $0004 Bit 7 Read: DDRA7 Write: Reset: 0 0 0 0 0 0 0 0 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 13-3. Data Direction Register A (DDRA) DDRA[7:0] -- Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 13-4 shows the port A I/O logic.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 221
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
READ DDRA ($0004) PTAPUEx WRITE DDRA ($0004) INTERNAL DATA BUS RESET WRITE PTA ($0000) PTAx PTAx DDRAx
READ PTA ($0000)
Freescale Semiconductor, Inc...
To KBI
Figure 13-4. Port A I/O Circuit When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-2 summarizes the operation of the port A pins. Table 13-2. Port A Pin Functions
PTAPUE Bit 1 0 X DDRA Bit 0 0 1 PTA Bit X(1) X X I/O Pin Mode Input, VDD(2) Input, Hi-Z(4) Output Accesses to DDRA Read/Write DDRA[7:0] DDRA[7:0] DDRA[7:0] Accesses to PTA Read Pin Pin PTA[7:0] Write PTA[7:0](3) PTA[7:0](3) PTA[7:0]
NOTES: 1. X = Don't care. 2. Pin pulled to VDD by internal pull-up. 3. Writing affects data register, but does not affect input. 4. Hi-Z = High impedance.
Technical Data 222 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port A
13.3.3 Port A Input Pull-Up Enable Registers The port A input pull-up enable registers contain a software configurable pull-up device for each of the eight port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx be configured as input. Each pull-up device is automatically disabled when its corresponding DDRAx bit is configured as output.
Address: $000D Bit 7 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Read: PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Write: Reset: 0 0 0 0 0 0 0 0
Figure 13-5. Port A Input Pull-up Enable Register (PTAPUE)
Address: $000E Bit 7 Read: PTAPUE7 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0
Figure 13-6. PTA7 Input Pull-up Enable Register (PTA7PUE) PTA6EN -- Enable PTA6 on OSC2 This read/write bit configures the OSC2 pin function when RC oscillator option is selected. This bit has no effect for XTAL oscillator option. 1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and pull-up functions 0 = OSC2 pin outputs the RC oscillator clock (RCCLK) PTAPUE[7:0] -- Port A Input Pull-up Enable Bits These read/write bits are software programmable to enable pull-up devices on port A pins. 1 = Corresponding port A pin configured to have internal pull-up if its DDRA bit is set to 0 0 = Pull-up device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com Technical Data 223
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports 13.4 Port B
Port B is an 8-bit special function port that shares all of its port pins with the analog-to-digital converter (ADC) module, see Section 12.
13.4.1 Port B Data Register (PTB) The port B data register contains a data latch for each of the eight port B pins.
Freescale Semiconductor, Inc...
Address:
$0001 Bit 7 6 PTB6 5 PTB5 4 PTB4 3 PTB3 2 PTB2 1 PTB1 Bit 0 PTB0
Read: PTB7 Write: Reset: Alternative Functions: ADC7 ADC6 ADC5 Unaffected by reset ADC4 ADC3 ADC2 ADC2 ADC0
Figure 13-7. Port B Data Register (PTB) PTB[7:0] -- Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. ADC7-ADC0 -- ADC channels 7 to 0 ADC7-ADC0 are pins used for the input channels to the analog-todigital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 12. Analog-to-Digital Converter (ADC).
Technical Data 224 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port B
13.4.2 Data Direction Register B (DDRB) Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.
Address: $0005 Bit 7 Read: DDRB7 Write: Reset: 0 0 0 0 0 0 0 0 6 DDRB6 5 DDRB5 4 DDRB4 3 DDRB3 2 DDRB2 1 DDRB1 Bit 0 DDRB0
Freescale Semiconductor, Inc...
Figure 13-8. Data Direction Register B (DDRB) DDRB[7:0] -- Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 13-9 shows the port B I/O logic.
READ DDRB ($0005)
WRITE DDRB ($0005) INTERNAL DATA BUS RESET WRITE PTB ($0001) PTBx PTBx DDRBx
READ PTB ($0001)
To Analog-To-Digital Converter
Figure 13-9. Port B I/O Circuit
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 225
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-3 summarizes the operation of the port B pins. Table 13-3. Port B Pin Functions
DDRB Bit PTB Bit X(1) X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRB Read/Write DDRB[7:0] DDRB[7:0] Accesses to PTB Read Pin PTB[7:0] Write PTB[7:0](3) PTB[7:0]
Freescale Semiconductor, Inc...
0 1
NOTES: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input.
Technical Data 226 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port D
13.5 Port D
Port D is an 8-bit special function port that shares two of its pins with the serial communications interface module (see Section 11.), two of its pins with the timer 1 interface module, (see Section 10.), and four of its pins with the analog-to-digital converter module (see Section 12.). PTD6 and PTD7 each has high current sink (25mA) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED sink capability.
NOTE:
PTD0-PTD1 are available on 28-pin and 32-pin packages only.
Freescale Semiconductor, Inc...
13.5.1 Port D Data Register (PTD) The port D data register contains a data latch for each of the eight port D pins.
Address: $0003 Bit 7 Read: PTD7 Write: Reset: Additional Functions LED (Sink) LED (Sink) Unaffected by reset LED (Sink) LED (Sink) PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 6 5 4 3 2 1 Bit 0
25mA sink 25mA sink
(Slow Edge) (Slow Edge)
pull-up Alternative Functions: RxD
pull-up TxD T1CH1 T1CH0 ADC8 ADC9 ADC10 ADC11
Figure 13-10. Port D Data Register (PTD) PTD[7:0] -- Port D Data Bits These read/write bits are software programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 227
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
ADC11-ADC8 -- ADC channels 11 to 8 ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an ADC input and overrides any control from the port I/O logic. See Section 12. Analog-to-Digital Converter (ADC). T1CH1, T1CH0 -- Timer 1 Channel I/Os The T1CH1 and T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD4/T1CH0 and PTD5/T1CH1 pins are timer channel I/O pins or general-purpose I/O pins. See Section 10. Timer Interface Module (TIM). TxD, RxD -- SCI Data I/O Pins The TxD and RxD pins are the transmit data output and receive data input for the SCI module. The enable SCI bit, ENSCI, in the SCI control register 1 enables the PTD6/TxD and PTD7/RxD pins as SCI TxD and RxD pins and overrides any control from the port I/O logic. See Section 11. Serial Communications Interface (SCI).
Freescale Semiconductor, Inc...
13.5.2 Data Direction Register D (DDRD) Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.
NOTE:
For those devices packaged in a 20-pin package, PTD0-PTD1 and are not connected. DDRD0-DDRD1 should be set to a 1 to configure PTD0-PTD1 as outputs.
Address: $0007 Bit 7 Read: DDRD7 Write: Reset: 0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 6 5 4 3 2 1 Bit 0
Figure 13-11. Data Direction Register D (DDRD)
Technical Data 228 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port D
DDRD[7:0] -- Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 13-12 shows the port D I/O logic.
READ DDRD ($0007) PTDPU[6:7] WRITE DDRD ($0007) INTERNAL DATA BUS RESET WRITE PTD ($0003) PTDx PTDx DDRDx
Freescale Semiconductor, Inc...
READ PTD ($0003)
To ADC, TIM1, SCI
Figure 13-12. Port D I/O Circuit When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-4 summarizes the operation of the port D pins. Table 13-4. Port D Pin Functions
DDRD Bit 0 1 PTD Bit X(1) X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRD Read/Write DDRD[7:0] DDRD[7:0] Accesses to PTD Read Pin PTD[7:0] Write PTD[7:0](3) PTD[7:0]
NOTES: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 229
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
13.5.3 Port D Control Register (PDCR) The port D control register enables/disables the pull-up resistor and slow-edge high current capability of pins PTD6 and PTD7.
Address: $000A Bit 7 Read: Write: 0 6 0 5 0 4 0 SLOWD7 SLOWD6 PTDPU7 PTDPU6 0 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
0
0
0
0
0
0
Figure 13-13. Port D Control Register (PDCR) SLOWDx -- Slow Edge Enable The SLOWD6 and SLOWD7 bits enable the slow-edge, open-drain, high current output (25mA sink) of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx. 1 = Slow edge enabled; pin is open-drain output 0 = Slow edge disabled; pin is push-pull (standard I/O) PTDPUx -- Port D Pull-up Enable Bits The PTDPU6 and PTDPU7 bits enable the pull-up device on PTD6 and PTD7 respectively, regardless the status of DDRDx bit. 1 = Enable pull-up device 0 = Disable pull-up device
Technical Data 230 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port E
13.6 Port E
Port E is a 2-bit special function port that shares its pins with the timer 2 interface module (see Section 10.).
NOTE:
PTE0-PTE1 are available on 32-pin packages only.
13.6.1 Port E Data Register (PTE)
Freescale Semiconductor, Inc...
The port E data register contains a data latch for each of the two port E pins.
Address: $0008 Bit 7 Read: PTE1 Write: Reset: Alternative Functions: Unaffected by reset T2CH1 T2CH0 PTE0 6 5 4 3 2 1 Bit 0
Figure 13-14. Port E Data Register (PTE) PTE[1:0] -- Port E Data Bits These read/write bits are software programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port D data. T2CH1, T2CH0 -- Timer 2 Channel I/Os The T2CH1 and T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTE0/T2CH0 and PTE1/T2CH1 pins are timer channel I/O pins or general-purpose I/O pins. See Section 10. Timer Interface Module (TIM).
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 231
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
13.6.2 Data Direction Register E (DDRE) Data direction register E determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer.
NOTE:
For those devices packaged in a 20-pin package and 28-pin package, PTE0-PTE1 are not connected. DDRE0-DDRE1 should be set to a 1 to configure PTE0-PTE1 as outputs.
Address: $000C Bit 7 Read: DDRE1 Write: Reset: 0 0 0 0 0 0 0 0 DDRE0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Figure 13-15. Data Direction Register E (DDRE) DDRE[1:0] -- Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE[1:0], configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input
NOTE:
Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 13-16 shows the port E I/O logic.
Technical Data 232 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports Port E
READ DDRE ($000C)
WRITE DDRE ($000C) INTERNAL DATA BUS RESET WRITE PTE ($0008) PTEx PTEx DDREx
READ PTE ($0008)
Freescale Semiconductor, Inc...
To TIM2
Figure 13-16. Port E I/O Circuit When DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-5 summarizes the operation of the port E pins. Table 13-5. Port E Pin Functions
DDRE Bit 0 1 PTE Bit X(1) X I/O Pin Mode Input, Hi-Z(2) Output Accesses to DDRE Read/Write DDRE[1:0] DDRE[1:0] Accesses to PTE Read Pin PTE[1:0] Write PTE[1:0](3) PTE[1:0]
NOTES: 1. X = don't care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
Technical Data 233
Freescale Semiconductor, Inc.
Input/Output (I/O) Ports
Freescale Semiconductor, Inc...
Technical Data 234 Input/Output (I/O) Ports For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 14. External Interrupt (IRQ)
14.1 Contents
14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Freescale Semiconductor, Inc...
14.3
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 14.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 14.5 14.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .239 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 239
14.2 Introduction
The external interrupt (IRQ) module provides a maskable interrupt input.
14.3 Features
Features of the IRQ module include the following: * * * * * * A dedicated external interrupt pin (IRQ) IRQ interrupt control bits Hysteresis buffer Programmable edge-only or edge and level interrupt sensitivity Automatic interrupt acknowledge Selectable internal pullup resistor
MC68HC908JL8 -- Rev. 2.0 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 235
Freescale Semiconductor, Inc.
External Interrupt (IRQ) 14.4 Functional Description
A logic zero applied to the external interrupt pin can latch a CPU interrupt request. Figure 14-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: * Vector fetch -- A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. Software clear -- Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic one to the ACK bit clears the IRQ latch. Reset -- A reset automatically clears the interrupt latch.
Freescale Semiconductor, Inc...
*
*
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set until both of the following occur: * * Vector fetch or software clear Return of the interrupt pin to logic one
The vector fetch or software clear may occur before or after the interrupt pin returns to logic one. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear.
Technical Data 236 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ) Functional Description
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. (See 7.6 Exception Control.)
RESET ACK INTERNAL ADDRESS BUS VECTOR FETCH DECODER VDD IRQPUD INTERNAL PULLUP DEVICE VDD D IRQ CLR Q SYNCHRONIZER CK IRQF IRQ INTERRUPT REQUEST TO CPU FOR BIL/BIH INSTRUCTIONS
Freescale Semiconductor, Inc...
IMASK
MODE HIGH VOLTAGE DETECT TO MODE SELECT LOGIC
Figure 14-1. IRQ Module Block Diagram
Addr. Register Name Read: IRQ Status and Control Register Write: (INTSCR) Reset: Bit 7 0 6 0 5 0 4 0 3 IRQF 2 0 IMASK ACK 0 0 0 0 0 0 0 0 MODE 1 Bit 0
$001D
= Unimplemented
Figure 14-2. IRQ I/O Register Summary
14.4.1 IRQ Pin A logic zero on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 237
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: * Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. Return of the IRQ pin to logic one -- As long as the IRQ pin is at logic zero, IRQ remains active.
Freescale Semiconductor, Inc...
*
The vector fetch or software clear and the return of the IRQ pin to logic one may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic zero. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin.
NOTE: NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. An internal pull-up resistor to VDD is connected to the IRQ pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).
Technical Data 238 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
External Interrupt (IRQ) IRQ Module During Break Interrupts
14.5 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Section 7. System Integration Module (SIM).) To allow software to clear the IRQ latch during a break interrupt, write a logic one to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
Freescale Semiconductor, Inc...
To protect the latches during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch.
14.6 IRQ Status and Control Register (INTSCR)
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR has the following functions: * * * *
Address:
Shows the state of the IRQ flag Clears the IRQ latch Masks IRQ and interrupt request Controls triggering sensitivity of the IRQ interrupt pin
$001D Bit 7 6 0 5 0 4 0 3 IRQF IMASK MODE 0 ACK 0 0 0 0 0 0 0 2 1 Bit 0
Read: Write: Reset:
0
= Unimplemented
Figure 14-3. IRQ Status and Control Register (INTSCR)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
Technical Data 239
Freescale Semiconductor, Inc.
External Interrupt (IRQ)
IRQF -- IRQ Flag Bit This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK -- IRQ Interrupt Request Acknowledge Bit Writing a logic one to this write-only bit clears the IRQ latch. ACK always reads as logic zero. Reset clears ACK. IMASK -- IRQ Interrupt Mask Bit
Freescale Semiconductor, Inc...
Writing a logic one to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE -- IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only
Address: $001E Bit 7 Read: IRQPUD Write: Reset: POR: 0 0 R 0 0 = Reserved 0 0
Not affected Not affected
6 R
5 R
4 LVIT1
3 LVIT0
2 R 0 0
1 R 0 0
Bit 0 R 0 0
0
0
Figure 14-4. Configuration Register 2 (CONFIG2) IRQPUD -- IRQ Pin Pull-Up Disable Bit IRQPUD disconnects the internal pull-up on the IRQ pin. 1 = Internal pull-up is disconnected 0 = Internal pull-up is connected between IRQ pin and VDD
Technical Data 240 External Interrupt (IRQ) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 15. Keyboard Interrupt Module (KBI)
15.1 Contents
15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Freescale Semiconductor, Inc...
15.3 15.4
15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 15.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 245 15.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 246 15.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 247 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 15.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .248
15.2 Introduction
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0-PTA7. When a port pin is enabled for keyboard interrupt function, an internal pull-up device is also enabled on the pin.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Technical Data 241
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) 15.3 Features
Features of the keyboard interrupt module include the following: * * * * Eight keyboard interrupt pins with pull-up devices Separate keyboard interrupt enable bits and one keyboard interrupt mask Programmable edge-only or edge- and level- interrupt sensitivity Exit from low-power modes
Bit 7 0 6 0 5 0 4 0 3 KEYF 2 0 IMASKK ACKK 0 KBIE7 0 0 KBIE6 0 0 KBIE5 0 0 KBIE4 0 0 KBIE3 0 0 KBIE2 0 0 KBIE1 0 0 KBIE0 0 MODEK 1 Bit 0
Freescale Semiconductor, Inc...
Addr.
Register Name Read: Keyboard Status and Control Register Write: (KBSCR) Reset: Read: Keyboard Interrupt Enable Register Write: (KBIER) Reset:
$001A
$001B
= Unimplemented
Figure 15-1. KBI I/O Register Summary
15.4 I/O Pins
The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 15-1. The generic pin name appear in the text that follows. Table 15-1. Pin Name Conventions
KBI Generic Pin Name KBI0-KBI5 KBI6 KBI7 Full MCU Pin Name PTA0/KBI0-PTA5/KBI5 OSC2/RCCLK/PTA6/KBI6(1) PTA7/KBI7 Pin Selected for KBI Function by KBIEx Bit in KBIER KBIE0-KBIE5 KBIE6 KBIE7
NOTES: 1. PTA6/KBI6 is only available when OSCSEL=0 at $FFD0 (RC option), and PTA6EN=1 at $000D.
Technical Data 242 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) Functional Description
15.5 Functional Description
INTERNAL BUS
KBI0 VDD . KBIE0 TO PULLUP ENABLE . . KBI7 D CLR Q
ACKK RESET
VECTOR FETCH DECODER KEYF SYNCHRONIZER Keyboard Interrupt Request
CK
Freescale Semiconductor, Inc...
KEYBOARD INTERRUPT FF
IMASKK
MODEK KBIE7 TO PULLUP ENABLE
Figure 15-2. Keyboard Interrupt Block Diagram Writing to the KBIE7-KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pull-up device regardless of PTAPUEx bits in the port A input pull-up enable register (see 13.3.3 Port A Input Pull-Up Enable Registers). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. * If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low.
*
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request:
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com Technical Data 243
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
* Vector fetch or software clear -- A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. Return of all enabled keyboard interrupt pins to logic 1 -- As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set.
Freescale Semiconductor, Inc...
*
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, disable the pullup device, use the data direction register to configure the pin as an input and then read the data register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin.
MC68HC908JL8 -- Rev. 2.0 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Technical Data 244
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) Keyboard Interrupt Registers
15.5.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.
Freescale Semiconductor, Inc...
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction register A. 2. Write logic 1's to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.
15.6 Keyboard Interrupt Registers
Two registers control the operation of the keyboard interrupt module: * * Keyboard status and control register Keyboard interrupt enable register
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
Technical Data 245
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI)
15.6.1 Keyboard Status and Control Register * * * *
Address:
Flags keyboard interrupt requests Acknowledges keyboard interrupt requests Masks keyboard interrupt requests Controls keyboard interrupt triggering sensitivity
$001A Bit 7 6 0 5 0 4 0 3 KEYF 2 0 IMASKK MODEK 0 ACKK 0 0 0 0 0 0 0 1 Bit 0
Freescale Semiconductor, Inc...
Read: Write: Reset:
0
= Unimplemented
Figure 15-3. Keyboard Status and Control Register (KBSCR) KEYF -- Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending on port A. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK -- Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port A. ACKK always reads as logic 0. Reset clears ACKK. IMASKK-- Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK -- Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only
Technical Data 246 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) Low-Power Modes
15.6.2 Keyboard Interrupt Enable Register The port-A keyboard interrupt enable register enables or disables each port-A pin to operate as a keyboard interrupt pin.
Address: $001B Bit 7 Read: KBIE7 Write: KBIE6 0 KBIE5 0 KBIE4 0 KBIE3 0 KBIE2 0 KBIE1 0 KBIE0 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
Figure 15-4. Keyboard Interrupt Enable Register (KBIER) KBIE7-KBIE0 -- Port-A Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin on port-A to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin
15.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
15.7.1 Wait Mode The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.
15.7.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com Technical Data 247
Freescale Semiconductor, Inc.
Keyboard Interrupt Module (KBI) 15.8 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.
Freescale Semiconductor, Inc...
To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect.
Technical Data 248 Keyboard Interrupt Module (KBI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 16. Computer Operating Properly (COP)
16.1 Contents
16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Freescale Semiconductor, Inc...
16.3
16.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.3 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 16.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 16.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 16.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 252 16.5 16.6 16.7 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253 16.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 16.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 16.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .254
16.2 Introduction
The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG1 register.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 249
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) 16.3 Functional Description
Figure 16-1 shows the structure of the COP module.
SIM ICLK 12-BIT SIM COUNTER SIM RESET CIRCUIT RESET STATUS REGISTER
Freescale Semiconductor, Inc...
CLEAR ALL STAGES
CLEAR STAGES 5-12
INTERNAL RESET SOURCES(1) RESET VECTOR FETCH COPCTL WRITE
COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COPD (FROM CONFIG1) RESET COPCTL WRITE COP RATE SEL (COPRS FROM CONFIG1) NOTE: 1. See SIM section for more details. CLEAR COP COUNTER
Figure 16-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 - 24 or 213 - 24 ICLK cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter.
NOTE:
Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow.
MC68HC908JL8 -- Rev. 2.0 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com MOTOROLA
Technical Data 250
COP TIMEOUT
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) I/O Signals
A COP reset pulls the RST pin low for 32 x ICLK cycles and sets the COP bit in the reset status register (RSR). (See 7.8.2 Reset Status Register (RSR).).
NOTE:
Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly.
Freescale Semiconductor, Inc...
16.4 I/O Signals
The following paragraphs describe the signals shown in Figure 16-1.
16.4.1 ICLK ICLK is the internal oscillator output signal, typically 50-kHz. The ICLK frequency varies depending on the supply voltage. See Section 19. Electrical Specifications for ICLK parameters.
16.4.2 COPCTL Write Writing any value to the COP control register (COPCTL) (see 16.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector.
16.4.3 Power-On Reset The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 x ICLK cycles after power-up.
16.4.4 Internal Reset An internal reset clears the SIM counter and the COP counter.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 251
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
16.4.5 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter.
16.4.6 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1 (CONFIG1). (See Section 5. Configuration and Mask Option Registers (CONFIG & MOR).)
Freescale Semiconductor, Inc...
16.4.7 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1.
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 R 0 = Reserved 0 0 0 0 0 0 R R LVID R SSREC STOP COPD 6 5 4 3 2 1 Bit 0
Figure 16-2. Configuration Register 1 (CONFIG1) COPRS -- COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. 1 = COP timeout period is (213 - 24) ICLK cycles 0 = COP timeout period is (218 - 24) ICLK cycles COPD -- COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled
Technical Data 252 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Computer Operating Properly (COP) COP Control Register
16.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector.
Address: $FFFF Bit 7 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Read: Write: Reset:
Low byte of reset vector Clear COP counter Unaffected by reset
Figure 16-3. COP Control Register (COPCTL)
16.6 Interrupts
The COP does not generate CPU interrupt requests.
16.7 Monitor Mode
The COP is disabled in monitor mode when VTST is present on the IRQ pin or on the RST pin.
16.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.
16.8.1 Wait Mode The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
Technical Data 253
Freescale Semiconductor, Inc.
Computer Operating Properly (COP)
16.8.2 Stop Mode Stop mode turns off the ICLK input to the COP if the STOP_ICLKDIS bit is set in configuration register 2 (CONFIG2). Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. After reset, the STOP_ICLKDIS bit is clear by default and ICLK is enabled during stop mode.
Freescale Semiconductor, Inc...
16.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VTST is present on the RST pin.
Technical Data 254 Computer Operating Properly (COP) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 17. Low Voltage Inhibit (LVI)
17.1 Contents
17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . 257
Freescale Semiconductor, Inc...
17.3 17.4 17.5
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
17.2 Introduction
This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the VDD pin and generates a reset when the VDD voltage falls to the LVI trip (LVITRIP) voltage.
17.3 Features
Features of the LVI module include the following: * * Selectable LVI trip voltage Selectable LVI circuit disable
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Low Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
Technical Data 255
Freescale Semiconductor, Inc.
Low Voltage Inhibit (LVI) 17.4 Functional Description
Figure 17-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to monitor VDD voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine at which VDD level the LVI module should take actions. The LVI module generates one output signal:
Freescale Semiconductor, Inc...
LVI Reset -- an reset signal will be generated to reset the CPU when VDD drops to below the set trip point.
VDD
LVID
VDD > LVITRIP = 0 LOW VDD DETECTOR VDD < LVITRIP = 1
LVI RESET
LVIT1
LVIT0
Figure 17-1. LVI Module Block Diagram
Technical Data 256 Low Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Low Voltage Inhibit (LVI) LVI Control Register (CONFIG2/CONFIG1)
17.5 LVI Control Register (CONFIG2/CONFIG1)
The LVI module is controlled by three bits in the configuration registers, CONFIG1 and CONFIG2.
Address: $001E Bit 7 Read: IRQPUD Write: R 0 0 R 0 0 LVIT1
Not affected
6
5
4
3 LVIT0
Not affected
2 R 0 0
1 R 0 0
Bit 0 STOP_ ICLKDIS 0 0
Freescale Semiconductor, Inc...
Reset: POR:
0 0
0
0
Figure 17-2. Configuration Register 2 (CONFIG2)
Address: $001F Bit 7 Read: COPRS Write: Reset: 0 R 0 = Reserved 0 0 0 0 0 0 R R LVID R SSREC STOP COPD 6 5 4 3 2 1 Bit 0
Figure 17-3. Configuration Register 1 (CONFIG1) LVID -- Low Voltage Inhibit Disable Bit LVID disables the LVI module. Reset clears LVID. 1 = Low voltage inhibit disabled 0 = Low voltage inhibit enabled LVIT1, LVIT0 -- LVI Trip Voltage Selection Bits These two bits determine at which level of VDD the LVI module will come into action. LVIT1 and LVIT0 are cleared by a power-on reset only.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Low Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
Technical Data 257
Freescale Semiconductor, Inc.
Low Voltage Inhibit (LVI)
Table 17-1. Trip Voltage Selection
LVIT1 0 0 1 1 LVIT0 0 1 0 1 Trip Voltage(1) VLVR3 (2.49V) VLVR3 (2.49V) VLVR5 (4.25V) Reserved Comments For VDD =3V operation For VDD =3V operation For VDD =5V operation
NOTES: 1. See Section 19. Electrical Specifications for full parameters.
Freescale Semiconductor, Inc...
17.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low-powerconsumption standby modes.
17.6.1 Wait Mode The LVI module, when enabled, will continue to operate in wait mode.
17.6.2 Stop Mode The LVI module, when enabled, will continue to operate in stop mode.
Technical Data 258 Low Voltage Inhibit (LVI) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 18. Break Module (BREAK)
18.1 Contents
18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Freescale Semiconductor, Inc...
18.3
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . .262 18.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 262 18.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 262 18.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262 18.5.1 Break Status and Control Register (BRKSCR) . . . . . . . . . 263 18.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .264 18.5.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 18.5.4 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . 266 18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
18.2 Introduction
This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
Technical Data 259
Freescale Semiconductor, Inc.
Break Module (BREAK) 18.3 Features
Features of the break module include the following: * * * * Accessible I/O registers during the break Interrupt CPU-generated break interrupts Software-generated break interrupts COP disabling during break interrupts
Freescale Semiconductor, Inc...
18.4 Functional Description
When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: * * A CPU-generated address (the address in the program counter) matches the contents of the break address registers. Software writes a logic one to the BRKA bit in the break status and control register.
When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 18-1 shows the structure of the break module.
Technical Data 260 Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BREAK) Functional Description
IAB[15:8]
BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB[15:0] CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW BKPT (TO SIM)
Freescale Semiconductor, Inc...
IAB[7:0]
Figure 18-1. Break Module Block Diagram
Addr.
Register Name Read: Break Status Register Write: (BSR) Reset: Read: Break Flag Control Register Write: (BFCR) Reset: Read: Break Address High Register Write: (BRKH) Reset: Read: Break Address low Register Write: (BRKL) Reset:
Bit 7 R
6 R
5 R
4 R
3 R
2 R
1 SBSW See note 0
Bit 0 R
$FE00
$FE03
BCFE 0 Bit15 0 Bit7 0 BRKE 0
R
R
R
R
R
R
R
$FE0C
Bit14 0 Bit6 0 BRKA 0
Bit13 0 Bit5 0 0
Bit12 0 Bit4 0 0
Bit11 0 Bit3 0 0
Bit10 0 Bit2 0 0
Bit9 0 Bit1 0 0
Bit8 0 Bit0 0 0
$FE0D
Read: Break Status and Control $FE0E Register Write: (BRKSCR) Reset:
Note: Writing a logic 0 clears SBSW.
0
0 R
0 = Reserved
0
0
0
= Unimplemented
Figure 18-2. Break I/O Register Summary
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
Technical Data 261
Freescale Semiconductor, Inc.
Break Module (BREAK)
18.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 7.8.3 Break Flag Control Register (BFCR) and see the Break Interrupts subsection for each module.) 18.4.2 CPU During Break Interrupts
Freescale Semiconductor, Inc...
The CPU starts a break interrupt by: * * Loading the instruction register with the SWI instruction Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 18.4.3 TIM During Break Interrupts A break interrupt stops the timer counter. 18.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin.
18.5 Break Module Registers
These registers control and monitor operation of the break module: * * * * *
Technical Data 262 Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
Break status and control register (BRKSCR) Break address register high (BRKH) Break address register low (BRKL) Break status register (BSR) Break flag control register (BFCR)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BREAK) Break Module Registers
18.5.1 Break Status and Control Register (BRKSCR) The break status and control register contains break module enable and status bits.
Address: $FE0E Bit 7 Read: BRKE Write: BRKA 0 0 0 0 0 0 0 6 5 0 4 0 3 0 2 0 1 0 Bit 0 0
Freescale Semiconductor, Inc...
Reset:
0
= Unimplemented
Figure 18-3. Break Status and Control Register (BRKSCR) BRKE -- Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic zero to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled BRKA -- Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic one to BRKA generates a break interrupt. Clear BRKA by writing a logic zero to it before exiting the break routine. Reset clears the BRKA bit. 1 = Break address match 0 = No break address match
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
Technical Data 263
Freescale Semiconductor, Inc.
Break Module (BREAK)
18.5.2 Break Address Registers The break address registers contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.
Address: $FE0C Bit 7 Read: Bit 15 Write: 14 0 13 0 12 0 11 0 10 0 9 0 Bit 8 0 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0
Figure 18-4. Break Address Register High (BRKH)
Address: $FE0D Bit 7 Read: Bit 7 Write: Reset: 0 0 0 0 0 0 0 0 6 5 4 3 2 1 Bit 0 6 5 4 3 2 1 Bit 0
Figure 18-5. Break Address Register Low (BRKL)
18.5.3 Break Status Register The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.
Address: $FE00 Bit 7 Read: R Write: Reset: R = Reserved R R R R R 6 5 4 3 2 1 SBSW Note(1) 0 1. Writing a logic zero clears SBSW. R Bit 0
Figure 18-6. Break Status Register (BSR)
Technical Data 264 Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Break Module (BREAK) Break Module Registers
SBSW -- SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example of this.
; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the ; break service routine software. HIBYTE LOBYTE ; EQU EQU 5 6
Freescale Semiconductor, Inc...
If not SBSW, do RTI BRCLR TST BNE DEC DOLO RETURN DEC PULH RTI SBSW,BSR, RETURN LOBYTE,SP DOLO HIBYTE,SP LOBYTE,SP ; See if wait mode or stop mode was exited ; by break. ; If RETURNLO is not zero, ; then just decrement low byte. ; Else deal with high byte, too. ; Point to WAIT/STOP opcode. ; Restore H register.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com
Technical Data 265
Freescale Semiconductor, Inc.
Break Module (BREAK)
18.5.4 Break Flag Control Register (BFCR) The break control register contains a bit that enables software to clear status bits while the MCU is in a break state.
Address: $FE03 Bit 7 Read: BCFE Write: R R R R R R R 6 5 4 3 2 1 Bit 0
Freescale Semiconductor, Inc...
Reset:
0 R = Reserved
Figure 18-7. Break Flag Control Register (BFCR) BCFE -- Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break
18.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 18.6.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see 7.7 Low-Power Modes). Clear the SBSW bit by writing logic zero to it. 18.6.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 7.8 SIM Registers.
Technical Data 266 Break Module (BREAK) For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 19. Electrical Specifications
19.1 Contents
19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .268 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 269 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 270 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 5V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 272 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . 273
Freescale Semiconductor, Inc...
19.3 19.4 19.5 19.6 19.7 19.8 19.9
19.10 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.11 3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 19.13 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 277 19.14 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 19.15 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
19.2 Introduction
This section contains electrical and timing specifications.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 267
Freescale Semiconductor, Inc.
Electrical Specifications 19.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum ratings. Refer to Sections 19.6 and 19.9 for guaranteed operating conditions. Table 19-1. Absolute Maximum Ratings
Freescale Semiconductor, Inc...
Characteristic(1) Supply voltage Input voltage Mode entry voltage, IRQ pin Maximum current per pin excluding VDD and VSS Storage temperature Maximum current out of VSS Maximum current into VDD
NOTES: 1. Voltages referenced to VSS.
Symbol VDD VIN VTST I TSTG IMVSS IMVDD
Value -0.3 to +6.0 VSS -0.3 to VDD +0.3 VSS -0.3 to +8.5
Unit V V V mA
25
-55 to +150 100 100
C
mA mA
NOTE:
This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.)
Technical Data 268 Electrical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Functional Operating Range
19.4 Functional Operating Range
Table 19-2. Operating Range
Characteristic Operating temperature range Operating voltage range Symbol TA VDD Value - 40 to +125 -- 5 10% - 40 to +85 3 10% 5 10% Unit
C
V
Freescale Semiconductor, Inc...
19.5 Thermal Characteristics
Table 19-3. Thermal Characteristics
Characteristic Thermal resistance 20-pin PDIP 20-pin SOIC 28-pin PDIP 28-pin SOIC 32-pin SDIP 32-pin LQFP I/O pin power dissipation Power dissipation(1) Symbol Value 70 70 70 70 70 95 User determined PD = (IDD x VDD) + PI/O = K/(TJ + 273 C) PD x (TA + 273 C) + PD2 x JA TA + (PD x JA) Unit
JA
C/W
PI/O PD
W W
Constant(2) Average junction temperature
K TJ
W/C
C
NOTES: 1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 269
Freescale Semiconductor, Inc.
Electrical Specifications 19.6 5V DC Electrical Characteristics
Table 19-4. DC Electrical Characteristics (5V)
Characteristic(1) Output high voltage (ILOAD = -2.0mA) PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1 Output low voltage (ILOAD = 1.6mA) PTA6, PTB0-PTB7, PTD0, PTD1, PTD4, PTD5, PTE0-PTE1 Output low voltage (ILOAD = 25mA) PTD6, PTD7 LED drives (VOL = 3V) PTA0-PTA5, PTA7, PTD2, PTD3, PTD6, PTD7 Input high voltage PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1, RST, IRQ, OSC1 Input low voltage PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1, RST, IRQ, OSC1 VDD supply current, fOP = 8MHz Run(3) XTAL oscillator option RC oscillator option Wait(4) XTAL oscillator option RC oscillator option Stop(5) (-40C to 125C) XTAL oscillator option RC oscillator option Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR rearm voltage(6) POR rise time ramp rate(7) Monitor mode entry voltage Symbol VOH Min VDD -0.8 Typ(2) -- Max Unit
--
V
VOL
--
--
0.4
V
Freescale Semiconductor, Inc...
VOL IOL
-- 10
-- 16
0.5 25
V mA
VIH
0.7 x VDD
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
-- -- IDD -- --
7.5 11 3 3.5
10 13 5.5 6
mA mA mA mA
-- -- IIL IIN COUT CIN VPOR RPOR VTST -- -- -- -- 0 0.035 1.5 x VDD
1.5 0.5 -- -- -- -- -- -- --
8 3
A A A A
pF mV V/ms V
10 1
12 8 100 -- 8.5
Technical Data 270 Electrical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 5V Control Timing
Table 19-4. DC Electrical Characteristics (5V)
Characteristic(1) Pullup resistors(8) PTD6, PTD7 RST, IRQ, PTA0-PTA7 Low-voltage inhibit, trip falling voltage Low-voltage inhibit, trip rising voltage Symbol RPU1 RPU2 VTRIPF VTRIPR Min Typ(2) 3.3 26 4.25 4.40 Max Unit
1.8 16 3.60 3.75
4.8 36 4.48 4.63
k k V V
Freescale Semiconductor, Inc...
NOTES: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V.
19.7 5V Control Timing
Table 19-5. Control Timing (5V)
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) TIM2 external clock input Symbol fOP tIRL fT2CLK Min -- 750 -- Max 8 -- 4 Unit MHz ns MHz
NOTES: 1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 271
Freescale Semiconductor, Inc.
Electrical Specifications 19.8 5V Oscillator Characteristics
Table 19-6. Oscillator Specifications (5V)
Characteristic Internal oscillator clock frequency External reference clock to OSC1 (2) Crystal reference frequency (3) Crystal load capacitance (4) Symbol fICLK fOSC fXTALCLK CL C1 C2 RB RS fRCCLK REXT CEXT -- -- -- -- -- -- 2M dc Min Typ 50k(1) -- -- -- 2 x CL 2 x CL 10 M -- -- See Figure 19-1 10 -- 32M 32M -- -- -- -- -- 12M Hz Max Unit Hz Hz Hz
Freescale Semiconductor, Inc...
Crystal fixed capacitance (3) Crystal tuning capacitance (3) Feedback bias resistor Series resistor (3), (5) External RC clock frequency RC oscillator external R RC oscillator external C
pF
NOTES: 1. Typical value reflect average measurements at midpoint of voltage range, 25 C only. See Figure 19-3 for plot. 2. No more than 10% duty cycle deviation from 50%. 3. Fundamental mode crystals only. 4. Consult crystal vendor data sheet. 5. Not required for high frequency crystals.
14 RC frequency, fRCCLK (MHz) 12 10 8 6 VDD 4 2 0 0 10 20 30 Resistor, REXT (k) 40 50 REXT CEXT CEXT = 10 pF 5V @ 25C OSC1
MCU
Figure 19-1. RC vs. Frequency (5V @25C)
Technical Data 272 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 3V DC Electrical Characteristics
19.9 3V DC Electrical Characteristics
Table 19-7. DC Electrical Characteristics (3V)
Characteristic(1) Output high voltage (ILOAD = -1.0mA) PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1 Output low voltage (ILOAD = 0.8mA) PTA6, PTB0-PTB7, PTD0, PTD1, PTD4, PTD5, PTE0-PTE1 Output low voltage (ILOAD = 20mA) PTD6, PTD7 LED drives (VOL = 1.8V) PTA0-PTA5, PTA7, PTD2, PTD3, PTD6, PTD7 Input high voltage PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1, RST, IRQ, OSC1 Input low voltage PTA0-PTA7, PTB0-PTB7, PTD0-PTD7, PTE0-PTE1,RST, IRQ, OSC1 VDD supply current, fOP = 4MHz Run(3) XTAL oscillator option RC oscillator option Wait(4) XTAL oscillator option RC oscillator option Stop(5) (-40C to 85C) XTAL oscillator option RC oscillator option Digital I/O ports Hi-Z leakage current Input current Capacitance Ports (as input or output) POR rearm voltage(6) POR rise time ramp rate(7) Monitor mode entry voltage Symbol VOH Min VDD - 0.4 Typ(2) -- Max Unit
--
V
VOL
--
--
0.4
V
Freescale Semiconductor, Inc...
VOL IOL
-- 3
-- 8
0.5 12
V mA
VIH
0.7 x VDD
--
VDD
V
VIL
VSS
--
0.3 x VDD
V
-- -- IDD -- --
3 4 1 2
8 10 4.5 6
mA mA mA mA
-- -- IIL IIN COUT CIN VPOR RPOR VTST -- -- -- -- 0 0.035 1.5 x VDD
0.5 0.3 -- -- -- -- -- -- --
5 2
A A A A
pF mV V/ms V
10 1
12 8 100 -- 8.5
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 273
Freescale Semiconductor, Inc.
Electrical Specifications
Table 19-7. DC Electrical Characteristics (3V)
Characteristic(1) Pullup resistors(8) PTD6, PTD7 RST, IRQ, PTA0-PTA7 Low-voltage inhibit, trip voltage (No hysteresis implemented for 3V LVI) Symbol RPU1 RPU2 VLVI3 Min Typ(2) 3.3 26 2.49 Max Unit
1.8 16 2.18
4.8 36 2.68
k k V
Freescale Semiconductor, Inc...
NOTES: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 C only. 3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD. 5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0V.
19.10 3V Control Timing
Table 19-8. Control Timing (3V)
Characteristic(1) Internal operating frequency(2) RST input pulse width low(3) TIM2 external clock input Symbol fOP tIRL fT2CLK Min -- 1.5 -- Max 4 -- 2 Unit MHz
s
MHz
NOTES: 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
Technical Data 274 Electrical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications 3V Oscillator Characteristics
19.11 3V Oscillator Characteristics
Table 19-9. Oscillator Specifications (3V)
Characteristic Internal oscillator clock frequency External reference clock to OSC1 (2) Crystal reference frequency (3) Crystal load capacitance (4) Symbol fICLK fOSC fXTALCLK CL C1 C2 RB RS fRCCLK REXT CEXT -- -- -- -- -- -- 2M dc Min Typ 45k(1) -- -- -- 2 x CL 2 x CL 10 M -- -- See Figure 19-2 10 -- 16M 16M -- -- -- -- -- 10M Hz Max Unit Hz Hz Hz
Freescale Semiconductor, Inc...
Crystal fixed capacitance (3) Crystal tuning capacitance (3) Feedback bias resistor Series resistor (3), (5) External RC clock frequency RC oscillator external R RC oscillator external C
pF
NOTES: 1. Typical value reflect average measurements at midpoint of voltage range, 25 C only. See Figure 19-3 for plot. 2. No more than 10% duty cycle deviation from 50%. 3. Fundamental mode crystals only. 4. Consult crystal vendor data sheet. 5. Not required for high frequency crystals.
14 RC frequency, fRCCLK (MHz) 12 10 8 6 VDD 4 2 0 0 10 20 30 Resistor, REXT (k) 40 50 REXT CEXT CEXT = 10 pF 3V @ 25C OSC1
MCU
Figure 19-2. RC vs. Frequency (3V @25C)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com Technical Data 275
Freescale Semiconductor, Inc.
Electrical Specifications
Internal OSC frequency, fICLK (kHz)
70 60 50 40 30 20 2 3 4 5 Supply Voltage, VDD (V) 6
-40 C +25C +85C +125C
Freescale Semiconductor, Inc...
Figure 19-3. Internal Oscillator Frequency
19.12 Typical Supply Currents
10 IDD (mA) 8 6 4 2 XTAL oscillator option 5.5 V 3.3 V
0
0 1 2 3 4 5 6 fOP or fBUS (MHz) 7 8 9
Figure 19-4. Typical Operating IDD (XTAL osc), with All Modules Turned On (25 C)
5 4 IDD (mA) 3 2 1 0 0 1 2 3 4 5 6 fOP or fBUS (MHz) 7 8 9 XTAL oscillator option 5.5 V 3.3 V
Figure 19-5. Typical Wait Mode IDD (XTAL osc), with All Modules Turned Off (25 C)
Technical Data 276 Electrical Specifications For More Information On This Product, Go to: www.freescale.com MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Electrical Specifications Timer Interface Module Characteristics
19.13 Timer Interface Module Characteristics
Table 19-10. Timer Interface Module Characteristics (5V and 3V)
Characteristic Input capture pulse width Input clock pulse width (T2CLK pulse width) Symbol tTIH, tTIL tLMIN, tHMIN Min 1/fOP (1/fOP) + 5ns Max -- -- Unit
19.14 ADC Characteristics
Freescale Semiconductor, Inc...
Table 19-11. ADC Characteristics (5V and 3V)
Characteristic Supply voltage Input voltages Resolution Absolute accuracy ADC internal clock Conversion range Power-up time Conversion time Sample time(1) Zero input reading(2) Full-scale reading(3) Input capacitance Input leakage(3) Port B/port D Symbol VDDAD VADIN BAD AAD fADIC RAD tADPU tADC tADS ZADI FADI CADI -- Min 2.7 (VDD min) VSS 8 Max 5.5 (VDD max) VDD 8 Unit V V Bits LSB MHz V tAIC cycles 15 -- 01 FF (20) 8 tAIC cycles tAIC cycles Hex Hex pF VIN = VSS VIN = VDD Not tested Includes quantization tAIC = 1/fADIC, tested only at 1 MHz Comments
0.5
0.5 VSS 16 14 5 00 FE -- --
1.5
1.048 VDD
1
A
NOTES: 1. Source impedances greater than 10 k adversely affect internal RC charging time during input sampling. 2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 3. The external system error caused by input leakage current is approximately equal to the product of R source and input current.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Electrical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 277
Freescale Semiconductor, Inc.
Electrical Specifications 19.15 Memory Characteristics
Table 19-12. Memory Characteristics
Characteristic RAM data retention voltage FLASH program bus clock frequency FLASH read bus clock frequency FLASH page erase time Symbol VRDR -- fread(1) terase(2) tmerase(3) tnvs tnvh tnvhl tpgs tprog trcv(4) tHV(5) --
(7)
Min 1.3 1 32k 4 4 10 5 100 5 30 1 -- 10k 10k 10
Max -- -- 8M -- -- -- -- -- -- 40 -- 4 -- -- --
Unit V MHz Hz ms ms
Freescale Semiconductor, Inc...
FLASH mass erase time FLASH PGM/ERASE to HVEN set up time FLASH high-voltage hold time FLASH high-voltage hold time (mass erase) FLASH program hold time FLASH program time FLASH return to read time FLASH cumulative program hv period FLASH row erase endurance(6) FLASH row program endurance FLASH data retention time(8)
s s s s s s
ms cycles cycles years
-- --
NOTES: 1. fread is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than terase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tmerase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tprog x 32) tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
Technical Data 278 Electrical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 20. Mechanical Specifications
20.1 Contents
20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 280 20-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 280 28-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . . 281 28-Pin Small Outline Integrated Circuit Package (SOIC) . . . . 281 32-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . 282 32-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 283
Freescale Semiconductor, Inc...
20.3 20.4 20.5 20.6 20.7 20.8
20.2 Introduction
This section gives the dimensions for: * * * * * * 20-pin plastic dual in-line package (case #738) 20-pin small outline integrated circuit package (case #751D) 28-pin plastic dual in-line package (case #710) 28-pin small outline integrated circuit package (case #751F) 32-pin shrink dual in-line package (case #1376) 32-pin low-profile quad flat pack (case #873A)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 279
Freescale Semiconductor, Inc.
Mechanical Specifications 20.3 20-Pin Plastic Dual In-Line Package (PDIP)
-A-
20 11 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. INCHES MIN MAX 1.010 1.070 0.240 0.260 0.150 0.180 0.015 0.022 0.050 BSC 0.050 0.070 0.100 BSC 0.008 0.015 0.110 0.140 0.300 BSC 0_ 15 _ 0.020 0.040 MILLIMETERS MIN MAX 25.66 27.17 6.10 6.60 3.81 4.57 0.39 0.55 1.27 BSC 1.27 1.77 2.54 BSC 0.21 0.38 2.80 3.55 7.62 BSC 0_ 15_ 0.51 1.01
B
1 10
C
L
Freescale Semiconductor, Inc...
-T-
SEATING PLANE
K M E G F D
20 PL
N J 0.25 (0.010)
M 20 PL
0.25 (0.010) TA
M
M
TB
M
DIM A B C D E F G J K L M N
Figure 20-1. 20-Pin PDIP (Case #738)
20.4 20-Pin Small Outline Integrated Circuit Package (SOIC)
-A-
20 11
-B-
1 10
10X
P 0.010 (0.25)
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A B C D F G J K M P R MILLIMETERS MIN MAX 12.65 12.95 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0_ 7_ 10.05 10.55 0.25 0.75 INCHES MIN MAX 0.499 0.510 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0_ 7_ 0.395 0.415 0.010 0.029
20X
D
M
0.010 (0.25)
TA
S
B
J
S
F R X 45 _ C -T-
18X SEATING PLANE
G
K
M
Figure 20-2. 20-Pin SOIC (Case #751D)
Technical Data 280 Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Mechanical Specifications 28-Pin Plastic Dual In-Line Package (PDIP)
20.5 28-Pin Plastic Dual In-Line Package (PDIP)
NOTES: 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 36.45 37.21 13.72 14.22 3.94 5.08 0.36 0.56 1.02 1.52 2.54 BSC 1.65 2.16 0.20 0.38 2.92 3.43 15.24 BSC 0 15 0.51 1.02 INCHES MIN MAX 1.435 1.465 0.540 0.560 0.155 0.200 0.014 0.022 0.040 0.060 0.100 BSC 0.065 0.085 0.008 0.015 0.115 0.135 0.600 BSC 0 15 0.020 0.040
28
15
B
1 14
A N
C
L
Freescale Semiconductor, Inc...
H
G
F D
K
SEATING PLANE
M
J
Figure 20-3. 28-Pin PDIP (Case #710)
20.6 28-Pin Small Outline Integrated Circuit Package (SOIC)
-A28 15 14X
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.
-B1 14
P 0.010 (0.25)
M
B
M
28X
D
M
0.010 (0.25)
TA
S
B
S
M R C
X 45 DIM A B C D F G J K M P R
26X
G K
-TSEATING PLANE
F J
MILLIMETERS MIN MAX 17.80 18.05 7.40 7.60 2.35 2.65 0.35 0.49 0.41 0.90 1.27 BSC 0.23 0.32 0.13 0.29 0 8 10.01 10.55 0.25 0.75
INCHES MIN MAX 0.701 0.711 0.292 0.299 0.093 0.104 0.014 0.019 0.016 0.035 0.050 BSC 0.009 0.013 0.005 0.011 0 8 0.395 0.415 0.010 0.029
Figure 20-4. 28-Pin SOIC (Case #751F)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
Technical Data 281
Freescale Semiconductor, Inc.
Mechanical Specifications 20.7 32-Pin Shrink Dual In-Line Package (SDIP)
A
32
27.9 27.8
3 B
17 NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5, 1994. 3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. 4. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
10.46 9.86
8.9 8.8
3
1
16
Freescale Semiconductor, Inc...
4.35 4.05 0.75 0.45
30X 2X
1.778 0.889 C
2.49 2.39 C
32X
T
SEATING PLANE
0.13
M
0.5 0.4 4 TAB
10 0 SECTION C-C
0.34 0.22
Figure 20-5. 32-Pin SDIP (Case #1376)
Technical Data 282 Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Mechanical Specifications 32-Pin Low-Profile Quad Flat Pack (LQFP)
20.8 32-Pin Low-Profile Quad Flat Pack (LQFP)
A A1
32 25
4X
0.20 (0.008) AB T-U Z
1
-T- B
-U- V P AE
Freescale Semiconductor, Inc...
B1
8
DETAIL Y
17
V1 AE DETAIL Y
9
-Z- 9 S1 S
4X
0.20 (0.008) AC T-U Z
G -AB-
SEATING PLANE
DETAIL AD
-AC-
BASE METAL
F
8X
M_ R
CE
SECTION AE-AE
X DETAIL AD
Figure 20-6. 32-Pin LQFP (Case #873A)
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
GAUGE PLANE
0.250 (0.010)
H
W
K
Q_
EE EE EE EE
N
D
0.20 (0.008)
M
AC T-U Z
0.10 (0.004) AC
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE -AB- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -T-, -U-, AND -Z- TO BE DETERMINED AT DATUM PLANE -AB-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -AC-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -AB-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.500 0.700 12_ REF 0.090 0.160 0.400 BSC 1_ 5_ 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.020 0.028 12_ REF 0.004 0.006 0.016 BSC 1_ 5_ 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF
J
DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X
Technical Data 283
-T-, -U-, -Z-
Freescale Semiconductor, Inc.
Mechanical Specifications
Freescale Semiconductor, Inc...
Technical Data 284 Mechanical Specifications For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Technical Data - MC68HC908JL8
Section 21. Ordering Information
21.1 Contents
21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Freescale Semiconductor, Inc...
21.3
21.2 Introduction
This section contains ordering numbers for the MC68HC908JL8.
21.3 MC Order Numbers
Table 21-1. MC Order Numbers
MC Order Number
MC68HC908JK8CP MC68HC908JK8MP MC68HC908JK8CDW MC68HC908JK8MDW MC68HC908JL8CP MC68HC908JL8MP MC68HC908JL8CDW MC68HC908JL8MDW MC68HC908JL8CSP MC68HC908JL8MSP MC68HC908JL8CFA MC68HC908JL8MFA
Operating Temperature Range -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C -40 C to +85 C -40 C to +125 C
Package
20-pin PDIP
20-pin SOIC
28-pin PDIP
28-pin SOIC
32-pin SDIP
32-pin LQFP
NOTE: Temperature grade "M" is available for VDD = 5V only.
MC68HC908JL8 -- Rev. 2.0 MOTOROLA Ordering Information For More Information On This Product, Go to: www.freescale.com
Technical Data 285
Freescale Semiconductor, Inc.
Ordering Information
Freescale Semiconductor, Inc...
Technical Data 286 Ordering Information For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8 -- Rev. 2.0 MOTOROLA
Freescale Semiconductor, Inc.
Freescale Semiconductor, Inc...
For More Information On This Product, Go to: www.freescale.com
Freescale Semiconductor, Inc.
HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 HOME PAGE: http://motorola.com/semiconductors
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Freescale Semiconductor, Inc...
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. (c) Motorola, Inc. 2002
For More Information On This Product, Go to: www.freescale.com
MC68HC908JL8/D Rev. 2.0 12/2002
This datasheet has been download from: www..com Datasheets for electronics components.


▲Up To Search▲   

 
Price & Availability of 68HC908JK8

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X